scholarly journals Point-evaluation functionals on algebras of symmetric functions on $(L_\infty)^2$

2019 ◽  
Vol 11 (2) ◽  
pp. 493-501
Author(s):  
T.V. Vasylyshyn

It is known that every continuous symmetric (invariant under the composition of its argument with each Lebesgue measurable bijection of $[0,1]$ that preserve the Lebesgue measure of measurable sets) polynomial on the Cartesian power of the complex Banach space $L_\infty$ of all Lebesgue measurable essentially bounded complex-valued functions on $[0,1]$ can be uniquely represented as an algebraic combination, i.e., a linear combination of products, of the so-called elementary symmetric polynomials. Consequently, every continuous complex-valued linear multiplicative functional (character) of an arbitrary topological algebra of the functions on the Cartesian power of $L_\infty,$ which contains the algebra of continuous symmetric polynomials on the Cartesian power of $L_\infty$ as a dense subalgebra, is uniquely determined by its values on elementary symmetric polynomials. Therefore, the problem of the description of the spectrum (the set of all characters) of such an algebra is equivalent to the problem of the description of sets of the above-mentioned values of characters on elementary symmetric polynomials. In this work, the problem of the description of sets of values of characters, which are point-evaluation functionals, on elementary symmetric polynomials on the Cartesian square of $L_\infty$ is completely solved. We show that sets of values of point-evaluation functionals on elementary symmetric polynomials satisfy some natural condition. Also, we show that for any set $c$ of complex numbers, which satisfies the above-mentioned condition, there exists an element $x$ of the Cartesian square of $L_\infty$ such that values of the point-evaluation functional at $x$ on elementary symmetric polynomials coincide with the respective elements of the set $c.$

2017 ◽  
Vol 9 (1) ◽  
pp. 22-27 ◽  
Author(s):  
T.V. Vasylyshyn

It is known that the so-called elementary symmetric polynomials $R_n(x) = \int_{[0,1]}(x(t))^n\,dt$ form an algebraic basis in the algebra of all symmetric continuous polynomials on the complex Banach space $L_\infty,$ which is dense in the Fr\'{e}chet algebra $H_{bs}(L_\infty)$ of all entire symmetric functions of bounded  type on $L_\infty.$ Consequently, every continuous homomorphism $\varphi: H_{bs}(L_\infty) \to \mathbb{C}$ is uniquely determined by the sequence $\{\varphi(R_n)\}_{n=1}^\infty.$ By the continuity of the homomorphism $\varphi,$ the sequence $\{\sqrt[n]{|\varphi(R_n)|}\}_{n=1}^\infty$ is bounded. On the other hand, for every sequence $\{\xi_n\}_{n=1}^\infty \subset \mathbb{C},$ such that the sequence $\{\sqrt[n]{|\xi_n|}\}_{n=1}^\infty$ is bounded,  there exists  $x_\xi \in L_\infty$ such that $R_n(x_\xi) = \xi_n$ for every $n \in \mathbb{N}.$ Therefore, for the point-evaluation functional $\delta_{x_\xi}$ we have $\delta_{x_\xi}(R_n) = \xi_n$ for every $n \in \mathbb{N}.$ Thus, every continuous complex-valued homomorphism of $H_{bs}(L_\infty)$ is a point-evaluation functional at some point of $L_\infty.$ Note that such a point is not unique. We can consider an equivalence relation on $L_\infty,$ defined by $x\sim y \Leftrightarrow \delta_x = \delta_y.$ The spectrum (the set of all continuous complex-valued homomorphisms) $M_{bs}$ of the algebra $H_{bs}(L_\infty)$ is one-to-one with the quotient set $L_\infty/_\sim.$ Consequently, $M_{bs}$ can be endowed with the quotient topology. On the other hand, it is naturally to identify $M_{bs}$ with the set of all sequences $\{\xi_n\}_{n=1}^\infty \subset \mathbb{C}$ such that the sequence $\{\sqrt[n]{|\xi_n|}\}_{n=1}^\infty$ is bounded.We show that the quotient topology is Hausdorffand that $M_{bs}$ with the operation of coordinate-wise addition of sequences forms an abelian topological group.


2018 ◽  
Vol 9 (2) ◽  
pp. 198-201 ◽  
Author(s):  
T.V. Vasylyshyn

It is known that every complex-valued homomorphism of the Fréchet algebra $H_{bs}(L_\infty)$ of all entire symmetric functions of bounded type on the complex Banach space $L_\infty$ is a point-evaluation functional $\delta_x$ (defined by $\delta_x(f) = f(x)$ for $f \in H_{bs}(L_\infty)$) at some point $x \in L_\infty.$ Therefore, the spectrum (the set of all continuous complex-valued homomorphisms) $M_{bs}$ of the algebra $H_{bs}(L_\infty)$ is one-to-one with the quotient set $L_\infty/_\sim,$ where an equivalence relation "$\sim$'' on $L_\infty$ is defined by $x\sim y \Leftrightarrow \delta_x = \delta_y.$ Consequently, $M_{bs}$ can be endowed with the quotient topology. On the other hand, $M_{bs}$ has a natural representation as a set of sequences which endowed with the coordinate-wise addition and the quotient topology forms an Abelian topological group. We show that the topology on $M_{bs}$ is metrizable and it is induced by the metric $d(\xi, \eta) = \sup_{n\in\mathbb{N}}\sqrt[n]{|\xi_n-\eta_n|},$ where $\xi = \{\xi_n\}_{n=1}^\infty,\eta = \{\eta_n\}_{n=1}^\infty \in M_{bs}.$


2021 ◽  
Vol 13 (2) ◽  
pp. 340-351
Author(s):  
T.V. Vasylyshyn

The work is devoted to the study of Fréchet algebras of symmetric (invariant under the composition of every of components of its argument with any measure preserving bijection of the domain of components of the argument) analytic functions on Cartesian powers of complex Banach spaces of Lebesgue integrable in a power $p\in [1,+\infty)$ complex-valued functions on the segment $[0,1]$ and on the semi-axis. We show that the Fréchet algebra of all symmetric analytic entire complex-valued functions of bounded type on the $n$th Cartesian power of the complex Banach space $L_p[0,1]$ of all Lebesgue integrable in a power $p\in [1,+\infty)$ complex-valued functions on the segment $[0,1]$ is isomorphic to the Fréchet algebra of all analytic entire functions on $\mathbb C^m,$ where $m$ is the cardinality of the algebraic basis of the algebra of all symmetric continuous complex-valued polynomials on this Cartesian power. The analogical result for the Fréchet algebra of all symmetric analytic entire complex-valued functions of bounded type on the $n$th Cartesian power of the complex Banach space $L_p[0,+\infty)$ of all Lebesgue integrable in a power $p\in [1,+\infty)$ complex-valued functions on the semi-axis $[0,+\infty)$ is proved.


2019 ◽  
Vol 2019 ◽  
pp. 1-6
Author(s):  
Han Ju Lee

Let X be a complex Banach space and Cb(Ω:X) be the Banach space of all bounded continuous functions from a Hausdorff space Ω to X, equipped with sup norm. A closed subspace A of Cb(Ω:X) is said to be an X-valued function algebra if it satisfies the following three conditions: (i) A≔{x⁎∘f:f∈A,  x⁎∈X⁎} is a closed subalgebra of Cb(Ω), the Banach space of all bounded complex-valued continuous functions; (ii) ϕ⊗x∈A for all ϕ∈A and x∈X; and (iii) ϕf∈A for every ϕ∈A and for every f∈A. It is shown that k-homogeneous polynomial and analytic numerical index of certain X-valued function algebras are the same as those of X.


2021 ◽  
Author(s):  
◽  
Leigh Alan Roberts

<p>Jack polynomials are useful in mathematical statistics, but they are awkward to calculate, and their uses have chiefly been theoretical. In this thesis a determinantal expansion of Jack polynomials in elementary symmetric polynomials is found, complementing a recent result in the literature on expansions as determinants in monomial symmetric functions. These results offer enhanced possibilities for the calculation of these polynomials, and for finding workable approximations to them. The thesis investigates the structure of the determinants concerned, finding which terms can be expected to dominate, and quantifying the sparsity of the matrices involved. Expressions are found for the elementary and monomial symmetric polynomials when the variates involved assume the form of arithmetic and geometric progressions. The latter case in particular is expected to facilitate the construction of algorithms suitable for approximating Jack polynomials.</p>


1970 ◽  
Vol 22 (1) ◽  
pp. 116-122 ◽  
Author(s):  
W. E. Meyers

The results of Rudin in [7] show that under certain conditions, the maximum modulus principle characterizes the algebra A (G) of functions analytic on an open subset G of the plane C (see below). In [2], Birtel obtained a characterization of A(C) in terms of the Liouville theorem; he proved that every singly generated F-algebra of continuous functions on C which contains no non-constant bounded functions is isomorphic to A(C) in the compact-open topology. In this paper we show that the Montel property of the topological algebra A (G) also characterizes it. In particular, any Montel algebra A of continuous complex-valued functions on G which contains the polynomials and has continuous homomorphism space M (A) homeomorphic to G is precisely A(G).


2019 ◽  
Vol 11 (2) ◽  
pp. 335-344
Author(s):  
F. Jawad ◽  
H. Karpenko ◽  
A.V. Zagorodnyuk

Let $X$ be a weighted direct sum of infinity many copies of complex spaces $\ell_1\bigoplus \ell_1.$ We consider an algebra consisting of polynomials on $X$ which are supersymmetric on each term $\ell_1\bigoplus \ell_1.$ Point evaluation functionals on such algebra gives us a relation of equivalence `$\sim$' on $X.$ We investigate the quotient set $X/\sim$ and show that under some conditions, it has a real topological algebra structure.


2018 ◽  
Vol 10 (2) ◽  
pp. 395-401
Author(s):  
T.V. Vasylyshyn

$*$-Polynomials are natural generalizations of usual polynomials between complex vector spaces. A $*$-polynomial is a function between complex vector spaces $X$ and $Y,$ which is a sum of so-called $(p,q)$-polynomials. In turn, for nonnegative integers $p$ and $q,$ a $(p,q)$-polynomial is a function between $X$ and $Y,$ which is the restriction to the diagonal of some mapping, acting from the Cartesian power $X^{p+q}$ to $Y,$ which is linear with respect to every of its first $p$ arguments, antilinear with respect to every of its last $q$ arguments and invariant with respect to permutations of its first $p$ arguments and last $q$ arguments separately. In this work we construct formulas for recovering of $(p,q)$-polynomial components of $*$-polynomials, acting between complex vector spaces $X$ and $Y,$ by the values of $*$-polynomials. We use these formulas for investigations of $*$-polynomials, acting from the $n$-dimensional complex vector space $\mathbb{C}^n$ to $\mathbb{C},$ which are symmetric, that is, invariant with respect to permutations of coordinates of its argument. We show that every symmetric $*$-polynomial, acting from $\mathbb{C}^n$ to $\mathbb{C},$ can be represented as an algebraic combination of some "elementary" symmetric $*$-polynomials. Results of the paper can be used for investigations of algebras, generated by symmetric $*$-polynomials, acting from $\mathbb{C}^n$ to $\mathbb{C}.$


Author(s):  
T. V. Vasylyshyn

We construct the element of the Cartesian square of the complex Banach space L ∞ [ 0,1 ] of all Lebesgue measurable essentially bounded functions on [ 0,1 ] by the predefined values of elementary symmetric polynomials on this element. Results of this work can be applied to the investigation of an algebraic basis of the algebra of continuous symmetric polynomials on the Cartesian square of the complex Banach space L ∞ [ 0,1 ] .


2021 ◽  
Author(s):  
◽  
Leigh Alan Roberts

<p>Jack polynomials are useful in mathematical statistics, but they are awkward to calculate, and their uses have chiefly been theoretical. In this thesis a determinantal expansion of Jack polynomials in elementary symmetric polynomials is found, complementing a recent result in the literature on expansions as determinants in monomial symmetric functions. These results offer enhanced possibilities for the calculation of these polynomials, and for finding workable approximations to them. The thesis investigates the structure of the determinants concerned, finding which terms can be expected to dominate, and quantifying the sparsity of the matrices involved. Expressions are found for the elementary and monomial symmetric polynomials when the variates involved assume the form of arithmetic and geometric progressions. The latter case in particular is expected to facilitate the construction of algorithms suitable for approximating Jack polynomials.</p>


Sign in / Sign up

Export Citation Format

Share Document