hairy black holes
Recently Published Documents


TOTAL DOCUMENTS

129
(FIVE YEARS 35)

H-INDEX

25
(FIVE YEARS 7)

2021 ◽  
Vol 820 ◽  
pp. 136604
Author(s):  
Jing-Tong Xing ◽  
Yuan Meng ◽  
Xiao-Mei Kuang

2021 ◽  
Vol 104 (2) ◽  
Author(s):  
Cristian Erices ◽  
Pantelis Filis ◽  
Eleftherios Papantonopoulos

2021 ◽  
pp. 168557
Author(s):  
A. Ramos ◽  
C. Arias ◽  
R. Avalos ◽  
E. Contreras

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Alex Davey ◽  
Oscar J. C. Dias ◽  
Paul Rodgers

Abstract We find the phase diagram of solutions of the charged black hole bomb system. In particular, we find the static hairy black holes of Einstein-Maxwell-Scalar theory confined in a Minkowski box. We impose boundary conditions such that the scalar field vanishes at and outside a cavity of constant radius. These hairy black holes are asymptotically flat with a scalar condensate floating above the horizon. We identify four critical scalar charges which mark significant changes in the qualitative features of the phase diagram. When they coexist, hairy black holes always have higher entropy than the Reissner-Nordström black hole with the same quasilocal mass and charge. So hairy black holes are natural candidates for the endpoint of the superradiant/near-horizon instabilities of the black hole bomb system. We also relate hairy black holes to the boson stars of the theory. When it has a zero horizon radius limit, the hairy black hole family terminates on the boson star family. Finally, we find the Israel surface tensor of the box required to confine the scalar condensate and that it can obey suitable energy conditions.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Takaaki Ishii ◽  
Keiju Murata ◽  
Jorge E. Santos ◽  
Benson Way

Abstract We study rotating global AdS solutions in five-dimensional Einstein gravity coupled to a multiplet complex scalar within a cohomogeneity-1 ansatz. The onset of the gravitational and scalar field superradiant instabilities of the Myers-Perry-AdS black hole mark bifurcation points to black resonators and hairy Myers-Perry-AdS black holes, respectively. These solutions are subject to the other (gravitational or scalar) instability, and result in hairy black resonators which contain both gravitational and scalar hair. The hairy black resonators have smooth zero-horizon limits that we call graviboson stars. In the hairy black resonator and graviboson solutions, multiple scalar components with different frequencies are excited, and hence these are multioscillating solutions. The phase structure of the solutions are examined in the microcanonical ensemble, i.e. at fixed energy and angular momenta. It is found that the entropy of the hairy black resonator is never the largest among them. We also find that hairy black holes with higher scalar wavenumbers are entropically dominant and occupy more of phase space than those of lower wavenumbers.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Andres Anabalon ◽  
Dumitru Astefanesei ◽  
Antonio Gallerati ◽  
Mario Trigiante

Abstract In this article we study a family of four-dimensional, $$ \mathcal{N} $$ N = 2 supergravity theories that interpolates between all the single dilaton truncations of the SO(8) gauged $$ \mathcal{N} $$ N = 8 supergravity. In this infinitely many theories characterized by two real numbers — the interpolation parameter and the dyonic “angle” of the gauging — we construct non-extremal electrically or magnetically charged black hole solutions and their supersymmetric limits. All the supersymmetric black holes have non-singular horizons with spherical, hyperbolic or planar topology. Some of these supersymmetric and non-extremal black holes are new examples in the $$ \mathcal{N} $$ N = 8 theory that do not belong to the STU model. We compute the asymptotic charges, thermodynamics and boundary conditions of these black holes and show that all of them, except one, introduce a triple trace deformation in the dual theory.


2021 ◽  
pp. 168488
Author(s):  
M. Rostami ◽  
J. Sadeghi ◽  
S. Miraboutalebi ◽  
B. Pourhassan

Sign in / Sign up

Export Citation Format

Share Document