gravity theories
Recently Published Documents


TOTAL DOCUMENTS

491
(FIVE YEARS 99)

H-INDEX

51
(FIVE YEARS 8)

2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Eric A. Bergshoeff ◽  
Mehmet Ozkan ◽  
Mustafa Salih Zöğ

Abstract We discuss a non-dynamical theory of gravity in three dimensions which is based on an infinite-dimensional Lie algebra that is closely related to an infinite-dimensional extended AdS algebra. We find an intriguing connection between on the one hand higher-derivative gravity theories that are consistent with the holographic c-theorem and on the other hand truncations of this infinite-dimensional Lie algebra that violate the Lie algebra structure. We show that in three dimensions different truncations reproduce, up to terms that do not contribute to the c-theorem, Chern-Simons-like gravity models describing extended 3D massive gravity theories. Performing the same procedure with similar truncations in dimensions larger than or equal to four reproduces higher derivative gravity models that are known in the literature to be consistent with the c-theorem but do not have an obvious connection to massive gravity like in three dimensions.


Author(s):  
David Escors ◽  
Grazyna Kochan

Most quantum gravity theories endow space-time with a discreet nature by space quantization on the order of Planck length (lp ). This discreetness could be demonstrated by confirmation of Lorentz invariance violations (LIV) manifested at length scales proportional to lp. In this paper, space-time line elements compatible with the uncertainty principle are calculated for a homogeneous, isotropic expanding Universe represented by the Friedmann-Lemaitre-Robertson-Walker solution to General Relativity (FLRW or FRW metric). To achieve this, the covariant geometric uncertainty principle (GeUP) is applied as a constraint over geodesics in FRW geometries. A generic expression for the quadratic proper space-time line element is derived, proportional to Planck length-squared and dependent on two contributions. The first is associated to the energy-time uncertainty, and the second depends on the Hubble function. The results are in agreement with space-time quantization on the expected length orders, according to quantum gravity theories and experimental constraints on LIV.


2021 ◽  
Vol 111 (6) ◽  
Author(s):  
Hadleigh Frost ◽  
Lionel Mason

AbstractWe review Lie polynomials as a mathematical framework that underpins the structure of the so-called double copy relationship between gauge and gravity theories (and a network of other theories besides). We explain how Lie polynomials naturally arise in the geometry and cohomology of $$\mathcal {M}_{0,n}$$ M 0 , n , the moduli space of n points on the Riemann sphere up to Mobiüs transformation. We introduce a twistorial correspondence between the cotangent bundle $$T^*_D\mathcal {M}_{0,n}$$ T D ∗ M 0 , n , the bundle of forms with logarithmic singularities on the divisor D as the twistor space, and $$\mathcal {K}_n$$ K n the space of momentum invariants of n massless particles subject to momentum conservation as the analogue of space–time. This gives a natural framework for Cachazo He and Yuan (CHY) and ambitwistor-string formulae for scattering amplitudes of gauge and gravity theories as being the corresponding Penrose transform. In particular, we show that it gives a natural correspondence between CHY half-integrands and scattering forms, certain $$n-3$$ n - 3 -forms on $$\mathcal {K}_n$$ K n , introduced by Arkani-Hamed, Bai, He and Yan (ABHY). We also give a generalization and more invariant description of the associahedral $$n-3$$ n - 3 -planes in $$\mathcal {K}_n$$ K n introduced by ABHY.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
G. Bruno De Luca ◽  
Alessandro Tomasiello

Abstract In a broad class of gravity theories, the equations of motion for vacuum compactifications give a curvature bound on the Ricci tensor minus a multiple of the Hessian of the warping function. Using results in so-called Bakry-Émery geometry, we put rigorous general bounds on the KK scale in gravity compactifications in terms of the reduced Planck mass or the internal diameter. We reexamine in this light the local behavior in type IIA for the class of supersymmetric solutions most promising for scale separation. We find that the local O6-plane behavior cannot be smoothed out as in other local examples; it generically turns into a formal partially smeared O4.


2021 ◽  
Vol 2081 (1) ◽  
pp. 012002
Author(s):  
I V Fomin ◽  
S V Chervon

Abstract We consider cosmological models based on the generalized scalar-tensor gravity, which correspond to the observational constraints on the parameters of cosmological perturbations for any model’s parameters. The estimates of the energy density of relic gravitational waves for such a cosmological models were made. The possibility of direct detection of such a gravitational waves using modern and prospective methods was discussed as well.


Author(s):  
David Escors ◽  
Grazyna Kochan

Most quantum gravity theories endow space-time with a discreet nature by space quantization on the order of Planck length (lp ). This discreetness could be demonstrated by confirmation of Lorentz invariance violations (LIV) manifested at length scales proportional to lp. In this paper, space-time line elements compatible with the uncertainty principle are calculated for a homogeneous, isotropic expanding Universe represented by the Friedmann-Lemaitre-Robertson-Walker solution to General Relativity (FLRW or FRW metric). To achieve this, the covariant geometric uncertainty principle (GeUP) is applied as a constraint over geodesics in FRW geometries. A generic expression for the quadratic proper space-time line element is derived, proportional to Planck length-squared and dependent on two contributions. The first is associated to the energy-time uncertainty, and the second depends on the Hubble function. The results are in agreement with space-time quantization on the expected length orders, according to quantum gravity theories and experimental constraints on LIV.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1408
Author(s):  
Taichiro Kugo

In general coordinate invariant gravity theories whose Lagrangians contain arbitrarily high order derivative fields, the Noether currents for the global translation and for the Nakanishi’s IOSp(8|8) choral symmetry containing the BRS symmetry as its member are constructed. We generally show that for each of these Noether currents, a suitable linear combination of equations of motion can be brought into the form of a Maxwell-type field equation possessing the Noether current as its source term.


Sign in / Sign up

Export Citation Format

Share Document