resonant ultrasound spectroscopy
Recently Published Documents


TOTAL DOCUMENTS

385
(FIVE YEARS 69)

H-INDEX

28
(FIVE YEARS 3)

2021 ◽  
pp. 1-20
Author(s):  
Christopher Sevigney ◽  
Onome Scott-Emuakpor ◽  
Farhad Farzbod

Abstract Resonance ultrasound spectroscopy (RUS) is a non-destructive technique for evaluating elastic and an-elastic material properties. The frequencies of free vibrations for a carefully crafted sample are measured, and material properties can be extracted from this. In one popular application, the determination of monocrystal elasticity, the results are not always reliable. In some cases, the resonant frequencies are insensitive to changes in certain elastic constants or their linear combinations. Previous work has been done to characterize these sensitivity issues in materials with isotropic and cubic symmetry. This work examines the sensitivity of elastic constant measurements by the RUS method for materials with hexagonal symmetry, such as titanium-diboride. We investigate the reliability of RUS data and explore supplemental measurements to obtain an accurate and complete set of elastic constants.


Author(s):  
E. G. Pashuk ◽  
G. D Kardashova ◽  
Sh. A. Khalilov

The paper discusses the possibility of using resonant ultrasonic spectroscopy (RUS) as a source of information for the physics and technology of obtaining silicon carbide ceramics by the example of samples of the composition SiC ‒ 25 % AlN, obtained by the method of spark plasma sintering. The possibility of obtaining a complete set of elastic moduli (EM) of samples with an error of less than 1 % is shown. At the same time, the requirements for surface quality are significantly reduced. The revealed functional relationship between EM and porosity makes it possible to create a non-destructive method of porosity control and calculate the elastic moduli at zero porosity (i. e., the elastic modulus of the ceramic matrix EM0). Comparison of EM0 samples obtained at different parameters of the technological process allows determining their optima values..


2021 ◽  
Vol 150 (4) ◽  
pp. A40-A40
Author(s):  
Paul Geimer ◽  
Luke Beardslee ◽  
Marcel Remillieux ◽  
Timothy J. Ulrich

Sign in / Sign up

Export Citation Format

Share Document