scholarly journals Resonant Ultrasound Spectroscopy: Sensitivity Analysis for Anisotropic Materials with Hexagonal Symmetry

2021 ◽  
pp. 1-20
Author(s):  
Christopher Sevigney ◽  
Onome Scott-Emuakpor ◽  
Farhad Farzbod

Abstract Resonance ultrasound spectroscopy (RUS) is a non-destructive technique for evaluating elastic and an-elastic material properties. The frequencies of free vibrations for a carefully crafted sample are measured, and material properties can be extracted from this. In one popular application, the determination of monocrystal elasticity, the results are not always reliable. In some cases, the resonant frequencies are insensitive to changes in certain elastic constants or their linear combinations. Previous work has been done to characterize these sensitivity issues in materials with isotropic and cubic symmetry. This work examines the sensitivity of elastic constant measurements by the RUS method for materials with hexagonal symmetry, such as titanium-diboride. We investigate the reliability of RUS data and explore supplemental measurements to obtain an accurate and complete set of elastic constants.

2006 ◽  
Vol 321-323 ◽  
pp. 1576-1579
Author(s):  
Yong Moo Cheong ◽  
Young Suk Kim

Zirconium alloys are used for many applications in nuclear components, such as the pressure tube material in a pressurized heavy water reactor, nuclear fuel cladding, etc. One of the problems during the operation of a nuclear reactor is the degradation of the zirconium alloys, which is due to an increase of the hydrogen content in the zirconium alloy. Therefore a non-destructive determination of the hydrogen concentration in zirconium alloy is one of the important issues that need to be addressed. The resonant ultrasound spectroscopy (RUS) technique is evaluated for a characterization of the hydrogen concentration in Zr-2.5Nb alloy. Referring to the terminal solid solubility for dissolution (TSSD) of Zr-2.5Nb alloy, the plot of the mechanical damping coefficient (Q-1) versus the temperature or the deviation of the resonant frequency for the temperature (df/dT) versus the temperature was correlated for the hydrogen concentration in Zr-2.5Nb alloy. It was found that the temperature at an abrupt change of the slope can be correlated with the hydrogen concentration of the Zr-2.5Nb alloy.


2010 ◽  
Vol 2010 ◽  
pp. 1-13 ◽  
Author(s):  
G. Li ◽  
J. R. Gladden

The measurement of elastic constants plays an important role in condensed matter physics and materials characterization. This paper presents the resonant ultrasound spectroscopy (RUS) method for the determination of elastic constants in a single crystal or amorphous solid. In RUS, the measured resonance spectrum of a properly prepared sample and other information such as geometry, density, and initial estimated elastic constants are used to determine the elastic constants of the material. We briefly present the theoretical background and applications to specific materials; however, the focus of this review is on the technical applications of RUS, especially those for high-temperature measurements.


Plant Methods ◽  
2019 ◽  
Vol 15 (1) ◽  
Author(s):  
María Dolores Fariñas ◽  
Daniel Jimenez-Carretero ◽  
Domingo Sancho-Knapik ◽  
José Javier Peguero-Pina ◽  
Eustaquio Gil-Pelegrín ◽  
...  

Abstract Background Non-contact resonant ultrasound spectroscopy (NC-RUS) has been proven as a reliable technique for the dynamic determination of leaf water status. It has been already tested in more than 50 plant species. In parallel, relative water content (RWC) is highly used in the ecophysiological field to describe the degree of water saturation in plant leaves. Obtaining RWC implies a cumbersome and destructive process that can introduce artefacts and cannot be determined instantaneously. Results Here, we present a method for the estimation of RWC in plant leaves from non-contact resonant ultrasound spectroscopy (NC-RUS) data. This technique enables to collect transmission coefficient in a [0.15–1.6] MHz frequency range from plant leaves in a non-invasive, non-destructive and rapid way. Two different approaches for the proposed method are evaluated: convolutional neural networks (CNN) and random forest (RF). While CNN takes the entire ultrasonic spectra acquired from the leaves, RF only uses four relevant parameters resulted from the transmission coefficient data. Both methods were tested successfully in Viburnum tinus leaf samples with Pearson’s correlations between 0.92 and 0.84. Conclusions This study showed that the combination of NC-RUS technique with deep learning algorithms is a robust tool for the instantaneous, accurate and non-destructive determination of RWC in plant leaves.


2018 ◽  
Vol 141 (2) ◽  
Author(s):  
Farhad Farzbod ◽  
Onome E. Scott-Emuakpor

Resonant ultrasound spectroscopy (RUS) is an experimental method to measure elastic and anelastic properties of materials. The RUS experiment is conducted by exciting a specimen with a simple geometry and measuring resonant frequencies. From the resonant behaviors, both elastic and anelastic properties of the sample material can be extracted. This paper investigates the sensitivities of measured resonant frequencies to changes in elastic constants for an isotropic material and anisotropic material with cubic symmetry. Also under investigation is whether different specimen geometries increase the sensitivity of RUS; in other words, a path for optimizing the reliability of RUS data is explored.


Sign in / Sign up

Export Citation Format

Share Document