computational materials science
Recently Published Documents


TOTAL DOCUMENTS

148
(FIVE YEARS 29)

H-INDEX

18
(FIVE YEARS 3)

Author(s):  
H. J. Böhm ◽  
G. A. Zickler ◽  
F. D. Fischer ◽  
J. Svoboda

AbstractThermodynamic modeling of the development of non-spherical inclusions as precipitates in alloys is an important topic in computational materials science. The precipitates may have markedly different properties compared to the matrix. Both the elastic contrast and the misfit eigenstrain may yield a remarkable generation of elastic strain energy which immediately influences the kinetics of the developing precipitates. The relevant thermodynamic framework has been mostly based on spherical precipitates. However, the shapes of actual particles are often not spherical. The energetics of such precipitates can be met by adapting the spherical energy terms with shape factors. The well-established Eshelby framework is used to evaluate the elastic strain energy of inclusions with ellipsoidal shapes (described by the axes a, b, and c) that are subjected to a volumetric transformation strain. The outcome of the study is two shape factors, one for the elastic strain energy and the other for the interface energy. Both quantities are provided in the form of easy-to-use diagrams. Furthermore, threshold elastic contrasts yielding strain energy shape factors with the value 1.0 for any ellipsoidal shape are studied.


2021 ◽  
pp. 12-20
Author(s):  
R. Balabai ◽  
M. Naumenko

One of the most important areas of modern technology is the creation of new structural materials with predetermined properties. Along with industrial methods for their preparation and technologies associated with the artificial growth of crystalline structures, various methods of computer modeling of new materials have recently become increasingly important. Such approaches can significantly reduce the number of full-scale experiments. Many applications of the computational materials science are related to the need to establish a relationship between structure and electronic characteristics, and other physical properties of crystals. This article on the example of crystalline β-Ga2O3 presents the algorithms used in the converting of the coordinates of the basis atoms in a unit cell of crystal, specified in a  crystallographic system, in the Cartesian coordinates for the computational experiment.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1469
Author(s):  
Matthias Posselt

In the last two decades, the importance of Computational Materials Science has continuously increased due to the steadily growing availability of computer power [...]


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Markus Kühbach ◽  
Priyanshu Bajaj ◽  
Huan Zhao ◽  
Murat H. Çelik ◽  
Eric A. Jägle ◽  
...  

AbstractThe development of strong-scaling computational tools for high-throughput methods with an open-source code and transparent metadata standards has successfully transformed many computational materials science communities. While such tools are mature already in the condensed-matter physics community, the situation is still very different for many experimentalists. Atom probe tomography (APT) is one example. This microscopy and microanalysis technique has matured into a versatile nano-analytical characterization tool with applications that range from materials science to geology and possibly beyond. Here, data science tools are required for extracting chemo-structural spatial correlations from the reconstructed point cloud. For APT and other high-end analysis techniques, post-processing is mostly executed with proprietary software tools, which are opaque in their execution and have often limited performance. Software development by members of the scientific community has improved the situation but compared to the sophistication in the field of computational materials science several gaps remain. This is particularly the case for open-source tools that support scientific computing hardware, tools which enable high-throughput workflows, and open well-documented metadata standards to align experimental research better with the fair data stewardship principles. To this end, we introduce paraprobe, an open-source tool for scientific computing and high-throughput studying of point cloud data, here exemplified with APT. We show how to quantify uncertainties while applying several computational geometry, spatial statistics, and clustering tasks for post-processing APT datasets as large as two billion ions. These tools work well in concert with Python and HDF5 to enable several orders of magnitude performance gain, automation, and reproducibility.


Soft Matter ◽  
2021 ◽  
Author(s):  
Antonia Statt ◽  
Devon C Kleeblatt ◽  
Wesley F. Reinhart

We apply a recently developed unsupervised machine learning scheme for local environments [Reinhart, Computational Materials Science, 2021, 196, 110511] to characterize large-scale, disordered aggregates formed by sequence-defined macromolecules. This method...


Sign in / Sign up

Export Citation Format

Share Document