de novo genes
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 13)

H-INDEX

11
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Anna Grandchamp ◽  
Katrin Berk ◽  
Elias Dohmen ◽  
Erich Bornberg-Bauer

De novo genes are novel genes which emerge from non-coding DNA. Until now, little is known about de novo genes properties, correlated to their age and mechanisms of emergence. In this study, we investigate four properties: introns, upstream regulatory motifs, 5 prime UTRs and protein domains, in 23135 human proto-genes. We found that proto-genes contain introns, whose number and position correlates with the genomic position of proto-gene emergence. The origin of these introns is debated, as our result suggest that 41% proto-genes might have captured existing introns, as well as the fact that 13.7% of them do not splice the ORF. We show that proto-genes which emerged via overprinting tend to be more enriched in core promotor motifs, while intergenic and intronic ones are more enriched in enhancers, even if the motif TATA is most expressed upstream these genes. Intergenic and intronic 5 prime UTRs of proto-genes have a lower potential to stabilise mRNA structures than exonic proto-genes and established human genes. Finally, we confirm that proto-genes gain new putative domains with age. Overall, we find that regulatory motifs inducing transcription and translation of previously non-coding sequences may facilitate proto-gene emergence. Our paper demonstrates that introns, 5 prime UTRs, and domains have specific properties in proto-genes. We also show the importance of studying proto-genes in relation to their genomic position, as it strongly impacts these properties.


Genetics ◽  
2021 ◽  
Author(s):  
Julie M Cridland ◽  
Alex C Majane ◽  
Li Zhao ◽  
David J Begun

Abstract Early work on de novo gene discovery in Drosophila was consistent with the idea that many such genes have male-biased patterns of expression, including a large number expressed in the testis. However, there has been little formal analysis of variation in the abundance and properties of de novo genes expressed in different tissues. Here we investigate the population biology of recently evolved de novo genes expressed in the D. melanogaster accessory gland, a somatic male tissue that plays an important role in male and female fertility and the post mating response of females, using the same collection of inbred lines used previously to identify testis-expressed de novo genes, thus allowing for direct cross tissue comparisons of these genes in two tissues of male reproduction. Using RNA-seq data we identify candidate de novo genes located in annotated intergenic and intronic sequence and determine the properties of these genes including chromosomal location, expression, abundance, and coding capacity. Generally, we find major differences between the tissues in terms of gene abundance and expression, though other properties such as transcript length and chromosomal distribution are more similar. We also explore differences between regulatory mechanisms of de novo genes in the two tissues and how such differences may interact with selection to produce differences in D. melanogaster de novo genes expressed in the two tissues.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6618
Author(s):  
Fredric M. Menger ◽  
Syed A. A. Rizvi

An extension of neo-Darwinism, termed preassembly, states that genetic material required for many complex traits, such as echolocation, was present long before emergence of the traits. Assembly of genes and gene segments had occurred over protracted time-periods within large libraries of non-coding genes. Epigenetic factors ultimately promoted transfers from noncoding to coding genes, leading to abrupt formation of the trait via de novo genes. This preassembly model explains many observations that to this present day still puzzle biologists: formation of super-complexity in the absence of multiple fossil precursors, as with bat echolocation and flowering plants; major genetic and physical alterations occurring in just a few thousand years, as with housecat evolution; lack of precursors preceding lush periods of species expansion, as in the Cambrian explosion; and evolution of costly traits that exceed their need during evolutionary times, as with human intelligence. What follows in this paper is a mechanism that is not meant to supplant neo-Darwinism; instead, preassembly aims to supplement current ideas when complexity issues leave them struggling.


2021 ◽  
Author(s):  
Emily L. Rivard ◽  
Andrew G. Ludwig ◽  
Prajal H. Patel ◽  
Anna Grandchamp ◽  
Sarah E. Arnold ◽  
...  

Comparative genomics has enabled the identification of genes that potentially evolved de novo from non-coding sequences. Many such genes are expressed in male reproductive tissues, but their functions remain poorly understood. To address this, we conducted a functional genetic screen of over 40 putative de novo genes with testis-enriched expression in Drosophila melanogaster and identified one gene, atlas, required for male fertility. Detailed genetic and cytological analyses show that atlas is required for proper chromatin condensation during the final stages of spermatogenesis. Atlas protein is expressed in spermatid nuclei and facilitates the transition from histone- to protamine-based chromatin packaging. Complementary evolutionary analyses revealed the complex evolutionary history of atlas. The protein-coding portion of the gene likely arose at the base of the Drosophila genus on the X chromosome but was unlikely to be essential, as it was then lost in several independent lineages. Within the last ~15 million years, however, the gene moved to an autosome, where it fused with a conserved non-coding RNA and evolved a non-redundant role in male fertility. Altogether, this study provides insight into the integration of novel genes into biological processes, the links between genomic innovation and functional evolution, and the genetic control of a fundamental developmental process, gametogenesis.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
William R. Blevins ◽  
Jorge Ruiz-Orera ◽  
Xavier Messeguer ◽  
Bernat Blasco-Moreno ◽  
José Luis Villanueva-Cañas ◽  
...  

AbstractDe novo gene origination has been recently established as an important mechanism for the formation of new genes. In organisms with a large genome, intergenic and intronic regions provide plenty of raw material for new transcriptional events to occur, but little is know about how de novo transcripts originate in more densely-packed genomes. Here, we identify 213 de novo originated transcripts in Saccharomyces cerevisiae using deep transcriptomics and genomic synteny information from multiple yeast species grown in two different conditions. We find that about half of the de novo transcripts are expressed from regions which already harbor other genes in the opposite orientation; these transcripts show similar expression changes in response to stress as their overlapping counterparts, and some appear to translate small proteins. Thus, a large fraction of de novo genes in yeast are likely to co-evolve with already existing genes.


Author(s):  
Yixin Zhao ◽  
Guang-An Lu ◽  
Hao Yang ◽  
Pei Lin ◽  
Zhongqi Liufu ◽  
...  

Abstract The Red Queen hypothesis depicts evolution as the continual struggle to adapt. According to this hypothesis, new genes, especially those originating from nongenic sequences (i.e., de novo genes), are eliminated unless they evolve continually in adaptation to a changing environment. Here, we analyze two Drosophila de novo miRNAs that are expressed in a testis-specific manner with very high rates of evolution in their DNA sequence. We knocked out these miRNAs in two sibling species and investigated their contributions to different fitness components. We observed that the fitness contributions of miR-975 in Drosophila simulans seem positive, in contrast to its neutral contributions in D. melanogaster, whereas miR-983 appears to have negative contributions in both species, as the fitness of the knockout mutant increases. As predicted by the Red Queen hypothesis, the fitness difference of these de novo miRNAs indicates their different fates.


2020 ◽  
Vol 12 (8) ◽  
pp. 1355-1366
Author(s):  
Karina Zile ◽  
Christophe Dessimoz ◽  
Yannick Wurm ◽  
Joanna Masel

Abstract Taxonomically restricted genes (TRGs) are genes that are present only in one clade. Protein-coding TRGs may evolve de novo from previously noncoding sequences: functional ncRNA, introns, or alternative reading frames of older protein-coding genes, or intergenic sequences. A major challenge in studying de novo genes is the need to avoid both false-positives (nonfunctional open reading frames and/or functional genes that did not arise de novo) and false-negatives. Here, we search conservatively for high-confidence TRGs as the most promising candidates for experimental studies, ensuring functionality through conservation across at least two species, and ensuring de novo status through examination of homologous noncoding sequences. Our pipeline also avoids ascertainment biases associated with preconceptions of how de novo genes are born. We identify one TRG family that evolved de novo in the Drosophila melanogaster subgroup. This TRG family contains single-copy genes in Drosophila simulans and Drosophila sechellia. It originated in an intron of a well-established gene, sharing that intron with another well-established gene upstream. These TRGs contain an intron that predates their open reading frame. These genes have not been previously reported as de novo originated, and to our knowledge, they are the best Drosophila candidates identified so far for experimental studies aimed at elucidating the properties of de novo genes.


2020 ◽  
Vol 77 (20) ◽  
pp. 3977-3989 ◽  
Author(s):  
Gianluigi Nocera ◽  
Claire Jacob

Abstract The great plasticity of Schwann cells (SCs), the myelinating glia of the peripheral nervous system (PNS), is a critical feature in the context of peripheral nerve regeneration following traumatic injuries and peripheral neuropathies. After a nerve damage, SCs are rapidly activated by injury-induced signals and respond by entering the repair program. During the repair program, SCs undergo dynamic cell reprogramming and morphogenic changes aimed at promoting nerve regeneration and functional recovery. SCs convert into a repair phenotype, activate negative regulators of myelination and demyelinate the damaged nerve. Moreover, they express many genes typical of their immature state as well as numerous de-novo genes. These genes modulate and drive the regeneration process by promoting neuronal survival, damaged axon disintegration, myelin clearance, axonal regrowth and guidance to their former target, and by finally remyelinating the regenerated axon. Many signaling pathways, transcriptional regulators and epigenetic mechanisms regulate these events. In this review, we discuss the main steps of the repair program with a particular focus on the molecular mechanisms that regulate SC plasticity following peripheral nerve injury.


2020 ◽  
Vol 88 (4) ◽  
pp. 382-398 ◽  
Author(s):  
Brennen Heames ◽  
Jonathan Schmitz ◽  
Erich Bornberg-Bauer
Keyword(s):  
De Novo ◽  

Sign in / Sign up

Export Citation Format

Share Document