cold plates
Recently Published Documents


TOTAL DOCUMENTS

100
(FIVE YEARS 30)

H-INDEX

9
(FIVE YEARS 2)

2021 ◽  
Vol 199 ◽  
pp. 117586
Author(s):  
Sandeep Dattu Chitta ◽  
Chaithanya Akkaldevi ◽  
Jeevan Jaidi ◽  
Satyam Panchal ◽  
Michael Fowler ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Lucas Arrivo ◽  
Steven Schon ◽  
Aaron P. Wemhoff

Abstract Data centers housing high performance computing equipment have large and growing rack densities, which pushes the limits of traditional air cooling technologies because of limited heat transfer coefficients. Therefore, on-chip cooling using so-called cold plates is emerging as a necessary cooling option for high-density electronics. The use of mini-channels or pins fins to enhance internal heat transfer area inside cold plates requires extensive micro-machining that is relatively time consuming and expensive for mass production. As an alternative approach, inserting and bonding pre-manufactured metal foams into hollow bodies are explored as a potentially inexpensive means to enhance the interior heat transfer area of cold plates. One key aspect of the performance of metal foams in cold plates is the thermal contact resistance in the bonding between the foam and the substrate. This project predicts the contact resistance using measurements of different foam types (pure Cu and Cu with oxide), porosities (63%, 80%, 93%, and 95%) and thicknesses (4 mm, 8 mm, and 10 mm). These measurements are carried out with and without the use of thermal interface material (TIM) pads. A theory is proposed and implemented to estimate the contact and foam thermal resistances, but further work is needed to gain confidence in the results. Observations suggest that different thermal behavior is seen for the Cu foams compared to the Cu with oxide foams, and that the use of TIM pads can achieve 10x to 40x reduction in overall thermal resistance for highly porous foams bonded on Cu substrates.


2021 ◽  
Author(s):  
Deogratius Kisitu ◽  
Alfonso Ortega

Abstract Impingement split flow liquid-cooled microchannel cold plates are one of several flow configurations used for single-phase liquid cooling. Split flow or top-in/side-exit (TISE) cold plates divide the flow into two branches thus resulting in halved or reduced flow rates and flow lengths, compared to traditional side-in /side-exit (SISE) or parallel flow cold plates. This has the effect of reducing the pressure drop because of the shorter flow length and lower flow rate and increasing the heat transfer coefficient due to thermally developing as opposed to fully developed flow. It is also claimed that the impinging flow increases the heat transfer coefficient on the base plate in the region of impingement. Because of the downward impinging and turning flow, there are no exact analytical models for this flow configuration. Computational and experimental studies have been performed, but there are no useful compact analytical models in the literature that can be used to predict the performance of these impingement cold plates. Results are presented for novel physics-based laminar flow models for a TISE microchannel cold plate based on an equivalent parallel channel flow approach. We show that the new models accurately predict the thermal-hydraulic performance over a wide range of parameters.


2021 ◽  
Author(s):  
Davide Spaggiari ◽  
Nicola Delmonte ◽  
Danilo Santoro ◽  
Federico Portesine ◽  
Filippo Vaccaro ◽  
...  

2021 ◽  
Vol 11 (11) ◽  
pp. 5188
Author(s):  
Tsu-Ping Yu ◽  
Yung-Lung Lee ◽  
Ya-We Li ◽  
Shih-Wei Mao

With the continued development of 5G mobile communications technology, the implementation of high-power communication systems has become a key indicator of developed nations. Communication modules are also trending toward wide bandwidth and high-capacity Multi-Input and Multi-Output systems. As the signal transmission speed and resolution continue with the increasing trend, the power used to operate these communications systems increase, causing extreme heat generation by transmit/receive modules (T/R module). In conditions where computation load increases in micro design systems, chips must operate in environments that are narrow, sealed, and have no convection, which can drastically increase the thermal load within a system. If no proper cooling system is utilized, the system fails or operates at impacted performance due to excessive temperatures. To solve the aforementioned problem, this study aimed to optimize the design of the cooling system in the T/R modules of communications systems by integrating heat pipes, cooling fans, cooling fins, and cooling chips within a limited space. We also proposed four types of cold plates based on the different directional clamp-in configuration methods of heat pipes within copper panels and utilized the finite element method to simulate and analyze the heat dissipation performance. The simulation results reveal that cold plates of types I and II can achieve a better heat dissipation performance. Finally, types I and II cold plates were selected for production and experimental verification. The results show that heat dissipation performances were similar to simulation results. The results also confirmed that type II cold plate has a better temperature uniformity and heat transfer efficiency. Thus, the cooling mechanism depicted in this study is viable in practical applications. The proposed mechanisms can also provide a reference for heat dissipation design patterns in different electronic module settings.


Author(s):  
David Shia ◽  
Jin Yang ◽  
Sean Sivapalan ◽  
Rithi Soeung ◽  
Christian Amoah-Kusi

Abstract Single phase cold plate based liquid cooling attracts more and more attention to high-performance computing (HPC) and general computing data centers for thermal management of modern microprocessors due to liquid's inherent advantage of higher specific heat compared to air. Deionized (DI) water is usually used as coolant for liquid cooling in data centers. On the contrary, propylene glycol/water is recommended as coolant for one-phase cold plate liquid cooling in this study for following reasons. The inhibited propylene glycol-based fluids of 25+% vol. have the benefit of being biostatic and not requiring addition of biocides. They also offer freeze protection in the usage of data centers in cold climates. The cold plates made from copper is prone to oxide even under room temperature and the dissimilarity between brazing material and copper can also cause galvanic corrosion in the usage. In this paper, a study was carried out to investigate cold plate corrosion with inhibited propylene glycol/water using design of experiments (DOE) method. This study shows manufacturing process plays an important role on corrosion risk of copper based cold plates and the corrosion risk can be mitigated by enabling new manufacturing processes, including friction stir welding (FSW) and nickel plating to the inside surface of the cold plate in the manufacturing process.


Sign in / Sign up

Export Citation Format

Share Document