urocortin 3
Recently Published Documents


TOTAL DOCUMENTS

93
(FIVE YEARS 18)

H-INDEX

21
(FIVE YEARS 2)

2021 ◽  
Vol 15 ◽  
Author(s):  
Sara Pagella ◽  
Jan M. Deussing ◽  
Conny Kopp-Scheinpflug

Sensory systems have to be malleable to context-dependent modulations occurring over different time scales, in order to serve their evolutionary function of informing about the external world while also eliciting survival-promoting behaviors. Stress is a major context-dependent signal that can have fast and delayed effects on sensory systems, especially on the auditory system. Urocortin 3 (UCN3) is a member of the corticotropin-releasing factor family. As a neuropeptide, UCN3 regulates synaptic activity much faster than the classic steroid hormones of the hypothalamic-pituitary-adrenal axis. Moreover, due to the lack of synaptic re-uptake mechanisms, UCN3 can have more long-lasting and far-reaching effects. To date, a modest number of studies have reported the presence of UCN3 or its receptor CRFR2 in the auditory system, particularly in the cochlea and the superior olivary complex, and have highlighted the importance of this stress neuropeptide for protecting auditory function. However, a comprehensive map of all neurons synthesizing UCN3 or CRFR2 within the auditory pathway is lacking. Here, we utilize two reporter mouse lines to elucidate the expression patterns of UCN3 and CRFR2 in the auditory system. Additional immunolabelling enables further characterization of the neurons that synthesize UCN3 or CRFR2. Surprisingly, our results indicate that within the auditory system, UCN3 is expressed predominantly in principal cells, whereas CRFR2 expression is strongest in non-principal, presumably multisensory, cell types. Based on the presence or absence of overlap between UCN3 and CRFR2 labeling, our data suggest unusual modes of neuromodulation by UCN3, involving volume transmission and autocrine signaling.


Biology ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 978
Author(s):  
Daniel Sobrido-Cameán ◽  
Ramón Anadón ◽  
Antón Barreiro-Iglesias

In this study, we analyzed the organization of urocortin 3 (Ucn3)-expressing neuronal populations in the brain of the adult sea lamprey by means of in situ hybridization. We also studied the brain of larval sea lampreys to establish whether this prosocial neuropeptide is expressed differentially in two widely different phases of the sea lamprey life cycle. In adult sea lampreys, Ucn3 transcript expression was observed in neurons of the striatum, prethalamus, nucleus of the medial longitudinal fascicle, torus semicircularis, isthmic reticular formation, interpeduncular nucleus, posterior rhombencephalic reticular formation and nucleus of the solitary tract. Interestingly, in larval sea lampreys, only three regions showed Ucn3 expression, namely the prethalamus, the nucleus of the medial longitudinal fascicle and the posterior rhombencephalic reticular formation. A comparison with distributions of Ucn3 in other vertebrates revealed poor conservation of Ucn3 expression during vertebrate evolution. The large qualitative differences in Ucn3 expression observed between larval and adult phases suggest that the maturation of neuroregulatory circuits in the striatum, torus semicircularis and hindbrain chemosensory systems is closely related to profound life-style changes occurring after the transformation from larval to adult life.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Anita E Autry ◽  
Zheng Wu ◽  
Vikrant Kapoor ◽  
Johannes Kohl ◽  
Dhananjay Bambah-Mukku ◽  
...  

While recent studies have uncovered dedicated neural pathways mediating the positive control of parenting, the regulation of infant-directed aggression and how it relates to adult-adult aggression is poorly understood. Here we show that urocortin-3 (Ucn3)-expressing neurons in the hypothalamic perifornical area (PeFAUcn3) are activated during infant-directed attacks in males and females, but not other behaviors. Functional manipulations of PeFAUcn3 neurons demonstrate the role of this population in the negative control of parenting in both sexes. PeFAUcn3 neurons receive input from areas associated with vomeronasal sensing, stress, and parenting, and send projections to hypothalamic and limbic areas. Optogenetic activation of PeFAUcn3 axon terminals in these regions triggers various aspects of infant-directed agonistic responses, such as neglect, repulsion, and aggression. Thus, PeFAUcn3 neurons emerge as a dedicated circuit component controlling infant-directed neglect and aggression, providing a new framework to understand the positive and negative regulation of parenting in health and disease.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sina Kavalakatt ◽  
Abdelkrim Khadir ◽  
Dhanya Madhu ◽  
Heikki A. Koistinen ◽  
Fahd Al-Mulla ◽  
...  

AbstractThe neuropeptide urocortin 3 (UCN3) has a beneficial effect on metabolic disorders, such as obesity, diabetes, and cardiovascular disease. It has been reported that UCN3 regulates insulin secretion and is dysregulated with increasing severity of obesity and diabetes. However, its function in the adipose tissue is unclear. We investigated the overexpression of UCN3 in 3T3-L1 preadipocytes and differentiated adipocytes and its effects on heat shock response, ER stress, inflammatory markers, and glucose uptake in the presence of stress-inducing concentrations of palmitic acid (PA). UCN3 overexpression significantly downregulated heat shock proteins (HSP60, HSP72 and HSP90) and ER stress response markers (GRP78, PERK, ATF6, and IRE1α) and attenuated inflammation (TNFα) and apoptosis (CHOP). Moreover, enhanced glucose uptake was observed in both preadipocytes and mature adipocytes, which is associated with upregulated phosphorylation of AKT and ERK but reduced p-JNK. Moderate effects of UCN3 overexpression were also observed in the presence of 400 μM of PA, and macrophage conditioned medium dramatically decreased the UCN3 mRNA levels in differentiated 3T3-L1 cells. In conclusion, the beneficial effects of UCN3 in adipocytes are reflected, at least partially, by the improvement in cellular stress response and glucose uptake and attenuation of inflammation and apoptosis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Patricia C. Lopes ◽  
Robert de Bruijn

AbstractFor many species, parental care critically affects offspring survival. But what drives animals to display parental behaviours towards young? In mammals, pregnancy-induced physiological transformations seem key in preparing the neural circuits that lead towards attraction (and reduced-aggression) to young. Beyond mammalian maternal behaviour, knowledge of the neural mechanisms that underlie young-directed parental care is severely lacking. We took advantage of a domesticated bird species, the Japanese quail, for which parental behaviour towards chicks can be induced in virgin non-reproductive adults through a sensitization procedure, a process that is not effective in all animals. We used the variation in parental responses to study neural transcriptomic changes associated with the sensitization procedure itself and with the outcome of the procedure (i.e., presence of parental behaviours). We found differences in gene expression in the hypothalamus and bed nucleus of the stria terminalis, but not the nucleus taeniae. Two genes identified are of particular interest. One is neurotensin, previously only demonstrated to be causally associated with maternal care in mammals. The other one is urocortin 3, causally demonstrated to affect young-directed neglect and aggression in mammals. Because our studies were conducted in animals that were reproductively quiescent, our results reflect core neural changes that may be associated with avian young-directed care independently of extensive hormonal stimulation. Our work opens new avenues of research into understanding the neural basis of parental care in non-placental species.


2021 ◽  
Vol 160 (6) ◽  
pp. S-103
Author(s):  
Maria Laura Ricardo Silgado ◽  
Changho Yun ◽  
Alison Mcrae ◽  
Gerardo Calderon ◽  
Daniel Gonzalez Izundegui ◽  
...  

Biology ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 74
Author(s):  
Rui Gao ◽  
Tao Yang ◽  
Quan Zhang

Somatostatin-secreting δ-cells have aroused great attention due to their powerful roles in coordination of islet insulin and glucagon secretion and maintenance of glucose homeostasis. δ-cells exhibit neuron-like morphology with projections which enable pan-islet somatostatin paracrine regulation despite their scarcity in the islets. The expression of a range of hormone and neurotransmitter receptors allows δ-cells to integrate paracrine, endocrine, neural and nutritional inputs, and provide rapid and precise feedback modulations on glucagon and insulin secretion from α- and β-cells, respectively. Interestingly, the paracrine tone of δ-cells can be effectively modified in response to factors released by neighboring cells in this interactive communication, such as insulin, urocortin 3 and γ-aminobutyric acid from β-cells, glucagon, glutamate and glucagon-like peptide-1 from α-cells. In the setting of diabetes, defects in δ-cell function lead to suboptimal insulin and glucagon outputs and lift the glycemic set-point. The interaction of δ-cells and non-δ-cells also becomes defective in diabetes, with reduces paracrine feedback to β-cells to exacerbate hyperglycemia or enhanced inhibition of α-cells, disabling counter-regulation, to cause hypoglycemia. Thus, it is possible to restore/optimize islet function in diabetes targeting somatostatin signaling, which could open novel avenues for the development of effective diabetic treatments.


iScience ◽  
2021 ◽  
Vol 24 (1) ◽  
pp. 101908
Author(s):  
Noriko Horii-Hayashi ◽  
Kensaku Nomoto ◽  
Nozomi Endo ◽  
Akihiro Yamanaka ◽  
Takefumi Kikusui ◽  
...  

2020 ◽  
Author(s):  
Ada Admin ◽  
Marie Eliane Azoury ◽  
Mahmoud Tarayrah ◽  
Georgia Afonso ◽  
Aurore Pais ◽  
...  

The antigenic peptides processed by β cells and presented through surface HLA Class I molecules are poorly characterized. Each HLA variant, e.g. the most common HLA-A2 and HLA-A3, carries some peptide-binding specificity. Hence, features that, despite these specificities, remain shared across variants may reveal factors favoring β-cell immunogenicity. Building on our previous description of the HLA-A2/A3 peptidome of β cells, we analyzed the HLA-A3-restricted peptides targeted by circulating CD8<sup>+</sup> T cells. Several peptides were recognized by CD8<sup>+</sup> T cells within a narrow frequency (1-50/10<sup>6</sup>), which was similar in donors with and without type 1 diabetes and harbored variable effector/memory fractions. These epitopes could be classified as conventional peptides or neo-epitopes, generated either via peptide <i>cis</i>-splicing or mRNA splicing, e.g. secretogranin-5 (SCG5)-009. As reported for HLA-A2-restricted peptides, several epitopes originated from β-cell granule proteins, e.g. SCG3, SCG5 and urocortin-3. Similarly, H-2K<sup>d</sup>-restricted CD8<sup>+</sup> T cells recognizing the murine orthologues of SCG5, urocortin-3, and proconvertase-2 infiltrated the islets of NOD mice and transferred diabetes into NOD/<i>scid</i> recipients. The finding of granule proteins targeted in both humans and NOD mice supports their disease relevance and identifies the insulin granule as a rich source of epitopes, possibly reflecting its impaired processing in type 1 diabetes.


2020 ◽  
Author(s):  
Ada Admin ◽  
Marie Eliane Azoury ◽  
Mahmoud Tarayrah ◽  
Georgia Afonso ◽  
Aurore Pais ◽  
...  

The antigenic peptides processed by β cells and presented through surface HLA Class I molecules are poorly characterized. Each HLA variant, e.g. the most common HLA-A2 and HLA-A3, carries some peptide-binding specificity. Hence, features that, despite these specificities, remain shared across variants may reveal factors favoring β-cell immunogenicity. Building on our previous description of the HLA-A2/A3 peptidome of β cells, we analyzed the HLA-A3-restricted peptides targeted by circulating CD8<sup>+</sup> T cells. Several peptides were recognized by CD8<sup>+</sup> T cells within a narrow frequency (1-50/10<sup>6</sup>), which was similar in donors with and without type 1 diabetes and harbored variable effector/memory fractions. These epitopes could be classified as conventional peptides or neo-epitopes, generated either via peptide <i>cis</i>-splicing or mRNA splicing, e.g. secretogranin-5 (SCG5)-009. As reported for HLA-A2-restricted peptides, several epitopes originated from β-cell granule proteins, e.g. SCG3, SCG5 and urocortin-3. Similarly, H-2K<sup>d</sup>-restricted CD8<sup>+</sup> T cells recognizing the murine orthologues of SCG5, urocortin-3, and proconvertase-2 infiltrated the islets of NOD mice and transferred diabetes into NOD/<i>scid</i> recipients. The finding of granule proteins targeted in both humans and NOD mice supports their disease relevance and identifies the insulin granule as a rich source of epitopes, possibly reflecting its impaired processing in type 1 diabetes.


Sign in / Sign up

Export Citation Format

Share Document