proton temperature
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 25)

H-INDEX

24
(FIVE YEARS 2)

2022 ◽  
Vol 924 (2) ◽  
pp. L22
Author(s):  
Zilu Zhou ◽  
Xiaojun Xu ◽  
Pingbing Zuo ◽  
Yi Wang ◽  
Qi Xu ◽  
...  

Abstract Plasma heating at thin current sheets in the solar wind is examined using magnetic field and plasma data obtained by the WIND spacecraft in the past 17 years from 2004 to 2019. In this study, a thin current sheet is defined by an abrupt rotation (larger than 45°) of the magnetic field direction in 3 s. A total of 57,814 current sheets have been identified, among which 25,018 current sheets are located in the slow wind and 19,842 current sheets are located in the fast wind. Significant plasma heating is found at current sheets in both slow and fast wind. Proton temperature increases more significantly at current sheets in the fast wind than in the slow wind, while the enhancement in electron temperature is less remarkable at current sheets in the fast wind. The results reveal that plasma heating commonly exists at thin current sheets in the solar wind regardless of the wind speed, but the underlying heating mechanisms might be different.


2022 ◽  
Vol 924 (2) ◽  
pp. 92
Author(s):  
G. Q. Zhao ◽  
Y. Lin ◽  
X. Y. Wang ◽  
H. Q. Feng ◽  
D. J. Wu ◽  
...  

Abstract Based on the Parker Solar Probe mission, this paper presents the observations of two correlations in solar wind turbulence near the Sun for the first time, demonstrating the clear existence of the following two correlations. One is positive correlation between the proton temperature and turbulent magnetic energy density. The other is negative correlation between the spectral index and magnetic helicity. It is found that the former correlation has a maximum correlation coefficient (CC) at the wavenumber k ρ p ≃ 0.5 (ρ p being the proton thermal gyroradius), and the latter correlation has a maximum absolute value of CC at k ρ p ≃ 1.8. In addition, investigations based on 11 yr of Wind observations reveal that the dimensionless wavenumbers (k ρ p ) corresponding to the maximum (absolute) values of CC remain nearly the same for different data sets. These results tend to suggest that the two correlations enhanced near the proton gyroradius scale would be a common feature of solar wind turbulence.


Author(s):  
Sebastián Rojas Mata ◽  
Gabriella Stenberg Wieser ◽  
Yoshifumi Futaana ◽  
Alexander Bader ◽  
Moa Persson ◽  
...  

2021 ◽  
Vol 126 (10) ◽  
Author(s):  
C. L. Lentz ◽  
A. Chasapis ◽  
R. A. Qudsi ◽  
J. Halekas ◽  
B. A. Maruca ◽  
...  

2021 ◽  
Vol 912 (2) ◽  
pp. 101
Author(s):  
L. D. Woodham ◽  
R. T. Wicks ◽  
D. Verscharen ◽  
J. M. TenBarge ◽  
G. G. Howes

2021 ◽  
Author(s):  
Christy L. Lentz ◽  
Alexandros Chasapis ◽  
Ramiz A. Qudsi ◽  
Jasper S. Halekas ◽  
Bennett Maruca ◽  
...  

2021 ◽  
Author(s):  
Roberto E. Navarro ◽  
Victor Muñoz ◽  
Juan A. Valdivia ◽  
Pablo S. Moya

<p>Wave-particle interactions are believed to be one of the most important kinetic processes regulating the heating and acceleration of Solar Wind plasma. One possible explanation to the observed preferential heating of alpha (He<sup>+2</sup>) ions relies on a process similar to a second order Fermi acceleration mechanism. In this model, heavy ions are able to resonate with multiple counter-propagating ion-cyclotron waves, while protons can encounter only single resonances, resulting in the subsequent preferential energization of minor ions. In this work, we address and test this idea by calculating the number of plasma particles that are resonating with ion-cyclotron waves propagating parallel and anti-parallel to an ambient magnetic field in a proton/alpha plasma with cold electrons. Resonances are calculated through the proper kinetic multi-species dispersion relation of Alfven waves. We show that 100% of the alpha population can resonate with counter-propagating waves below a threshold ΔU<sub>αp</sub>/v<sub>A</sub><U<sub>0</sub>+a(β+β<sub>0</sub>)<sup>b</sup> in the differential streaming between protons and alpha particles, where U<sub>0</sub>=-0.532, a=1.211, β<sub>0</sub>=0.0275, and b=0.348 for isotropic ions. This threshold seems to match with constraints of the observed ΔU<sub>αp</sub> in the Solar Wind for low values of the proton plasma beta<strong>.</strong> Finally, it is also shown that this process is limited by the growth of plasma kinetic instabilities, a constraint that could explain alpha-to-proton temperature ratio observations in the Solar Wind at 1 AU.</p>


2021 ◽  
Author(s):  
Mingzhe Liu ◽  
Zhongwei Yang ◽  
Ying D. Liu ◽  
Bertrand Lembege ◽  
Karine Issautier ◽  
...  

<p>We investigate the properties of an interplanetary shock (M<sub>A</sub>=3.0, θ<sub>Bn</sub>=80°) propagating in Super-Alfvénic solar wind observed on September 12<sup>th,</sup> 1999 with in situ Wind/MFI and Wind/3DP observations. Key results are obtained concerning the possible energy dissipation mechanisms across the shock and how the shock modifies the ambient solar wind at MHD and kinetic scales:  (1) Waves observed in the far upstream of the shock are incompressional and mostly shear Alfvén waves.  (2) In the downstream, the shocked solar wind shows both Alfvénic and mirror-mode features due to the coupling between the Alfvén waves and ion mirror-mode waves.  (3) Specularly reflected gyrating ions, whistler waves, and ion cyclotron waves are observed around the shock ramp, indicating that the shock may rely on both particle reflection and wave-particle interactions for energy dissipation.  (4) Both ion cyclotron and mirror mode instabilities may be excited in the downstream of the shock since the proton temperature anisotropy touches their thresholds due to the enhanced proton temperature anisotropy.  (5) Whistler heat flux instabilities excited around the shock give free energy for the whistler precursors, which help explain the isotropic electron number and energy flux together with the normal betatron acceleration of electrons across the shock.  (6) The shock may be somehow connected to the electron foreshock region of the Earth’s bow shock, since Bx > 0, By < 0, and the electron flux varies only when the electron pitch angles are less than PA = 90°, which should be further investigated. Furthermore, the interaction between Alfvén waves and the shock and how the shock modifies the properties of the Alfvén waves are also discussed.</p>


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
S. Vallières ◽  
M. Salvadori ◽  
A. Permogorov ◽  
G. Cantono ◽  
K. Svendsen ◽  
...  

AbstractLaser-driven proton acceleration is a growing field of interest in the high-power laser community. One of the big challenges related to the most routinely used laser-driven ion acceleration mechanism, Target-Normal Sheath Acceleration (TNSA), is to enhance the laser-to-proton energy transfer such as to maximize the proton kinetic energy and number. A way to achieve this is using nanostructured target surfaces in the laser-matter interaction. In this paper, we show that nanowire structures can increase the maximum proton energy by a factor of two, triple the proton temperature and boost the proton numbers, in a campaign performed on the ultra-high contrast 10 TW laser at the Lund Laser Center (LLC). The optimal nanowire length, generating maximum proton energies around 6 MeV, is around 1–2 $$\upmu$$ μ m. This nanowire length is sufficient to form well-defined highly-absorptive NW forests and short enough to minimize the energy loss of hot electrons going through the target bulk. Results are further supported by Particle-In-Cell simulations. Systematically analyzing nanowire length, diameter and gap size, we examine the underlying physical mechanisms that are provoking the enhancement of the longitudinal accelerating electric field. The parameter scan analysis shows that optimizing the spatial gap between the nanowires leads to larger enhancement than by the nanowire diameter and length, through increased electron heating.


Sign in / Sign up

Export Citation Format

Share Document