constant symbol
Recently Published Documents


TOTAL DOCUMENTS

12
(FIVE YEARS 3)

H-INDEX

3
(FIVE YEARS 0)

2020 ◽  
Author(s):  
Jan Aldert Bergstra ◽  
John V. Tucker

In an arithmetical structure one can make division a total function by defining 1/0 to be an element of the structure, or by adding a new element, such as an error element also denoted with a new constant symbol, an unsigned infinity or one or both signed infinities, one positive and one negative. We define an enlargement of a field to a transfield, in which division is totalised by setting 1/0 equal to the positive infinite value and -1/0 equal to its opposite, and which also contains an error element to help control their effects. We construct the transrational numbers as a transfield of the field of rational numbers and consider it as an abstract data type. We give it an equational specification under initial algebra semantics.


Author(s):  
Ayman Eid Al-Rawajfa

    Proceeding from the thoroughly revealed and elucidated Holy Quran, the paper addresses the disconnected letters and their signified interpretations. The research methodology employed relies on the interpretation of the Qur’an by the Qur’an as stated in Surah Al-An'am (6), verse No. 38: “We have neglected nothing in the Book, then unto their Lord they (all) shall be gathered”. Two intertwined thoughts are examined in this paper. First, disconnected letters can be compared to the list of symbols, which are recurrently used in books and scientific research; for example, the speed of light has a constant symbol that researchers of different language backgrounds can know. Second, the theory of set point net is used to demystify the secrets of interconnections between two Surahs, two verses or two letters in the Holy Qur’an. The paper finally finds that the letters are disconnected but strongly interconnected.    


2002 ◽  
Vol 67 (2) ◽  
pp. 635-648
Author(s):  
Xavier Vidaux

AbstractLet K and K′ be two elliptic fields with complex multiplication over an algebraically closed field k of characteristic 0. non k-isomorphic, and let C and C′ be two curves with respectively K and K′ as function fields. We prove that if the endomorphism rings of the curves are not isomorphic then K and K′ are not elementarily equivalent in the language of fields expanded with a constant symbol (the modular invariant). This theorem is an analogue of a theorem from David A. Pierce in the language of k-algebras.


1989 ◽  
Vol 54 (1) ◽  
pp. 264-270 ◽  
Author(s):  
Terrence Millar

An Ehrenfeucht theory is a complete first order theory with exactly n countable models up to isomorphism, 1 < n < ω. Numerous results have emerged regarding these theories ([1]–[15]). A general question in model theory is whether or not the number of countable models of a complete theory can be different than the number of countable models of a complete consistent extension of the theory by finitely many constant symbols. Examples are known of Ehrenfeucht theories that have complete extensions by finitely many constant symbols such that the extensions fail to be Ehrenfeucht ([4], [8], [13]). These examples are easily modified to allow finite increases in the number of countable models.This paper contains examples in the other direction—complete theories that have consistent extensions by finitely many constant symbols such that the extensions have fewer countable models. This answers affirmatively a question raised by, among others, Peretyat'kin [8]. The first example will be an Ehrenfeucht theory with exactly four countable models with an extension by a constant symbol that has only three countable models. The second example will be a complete theory that is not Ehrenfeucht, but which has an extension by a constant symbol that is Ehrenfeucht. The notational conventions for this paper are standard.Peretyat'kin introduced the theory of a dense binary branching tree with a meet operator [7]. Dense ω-branching trees have also proven useful [5], [11]. Both of the Theories that will be constructed make use of dense ω-branching trees.


1984 ◽  
Vol 49 (3) ◽  
pp. 951-954
Author(s):  
Cornelia Kalfa

The recursively unsolvable halting problem for Turing machines is reduced to the problem of the existence or not of an algorithm for deciding whether a field is finite. The latter problem is further reduced to the decision problem of each of propertiesfor recursive sets Σ of equations of strong algebraic languages with infinitely many operation symbols.Decision problems concerning properties of sets of equations were first raised by Tarski [9] and subsequently examined by Perkins [6], McKenzie [4], McNulty [5] and Pigozzi [7]. Perkins is the only one who studied recursive sets; the others investigated finite sets. Since the undecidability of properties Pi for recursive sets of equations does not imply any answer to the corresponding decision problems for finite sets, the latter problems remain open.The work presented here is part of my Ph.D. thesis [2]. I thank Wilfrid Hodges, who supervised it.An algebraic language is a first-order language with equality but without relation symbols. It is here denoted by , where Qi is an operation symbol and cj, is a constant symbol.


Sign in / Sign up

Export Citation Format

Share Document