scholarly journals On representation of functions that satisfy Lipschitz condition as convolution of functions from Lorentz spaces

2021 ◽  
Vol 18 ◽  
pp. 133
Author(s):  
B.I. Peleshenko

Any $2\pi$-periodic function from the Lipschitz space $\Lambda_b^{\alpha}$ can be represented by way of the convolution of the functions from the Lorentz spaces $L_{p,r}$ and $L_{b,r'}$ in the case when $1 \leqslant b < \infty$, $0 < 1 - p^{-1} < \alpha < 1$ and the numbers $r$, $r'$ are picked in the corresponding way.

Author(s):  
Mohamed-Ahmed Boudref

Hankel transform (or Fourier-Bessel transform) is a fundamental tool in many areas of mathematics and engineering, including analysis, partial differential equations, probability, analytic number theory, data analysis, etc. In this article, we prove an analog of Titchmarsh's theorem for the Hankel transform of functions satisfying the Hankel-Lipschitz condition.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Tapendu Rana

AbstractIn this paper, we prove a genuine analogue of the Wiener Tauberian theorem for {L^{p,1}(G)} ({1\leq p<2}), with {G=\mathrm{SL}(2,\mathbb{R})}.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Andrea Gentile

Abstract We establish some higher differentiability results of integer and fractional order for solutions to non-autonomous obstacle problems of the form min ⁡ { ∫ Ω f ⁢ ( x , D ⁢ v ⁢ ( x ) ) : v ∈ K ψ ⁢ ( Ω ) } , \min\biggl{\{}\int_{\Omega}f(x,Dv(x)):v\in\mathcal{K}_{\psi}(\Omega)\biggr{\}}, where the function 𝑓 satisfies 𝑝-growth conditions with respect to the gradient variable, for 1 < p < 2 1<p<2 , and K ψ ⁢ ( Ω ) \mathcal{K}_{\psi}(\Omega) is the class of admissible functions v ∈ u 0 + W 0 1 , p ⁢ ( Ω ) v\in u_{0}+W^{1,p}_{0}(\Omega) such that v ≥ ψ v\geq\psi a.e. in Ω, where u 0 ∈ W 1 , p ⁢ ( Ω ) u_{0}\in W^{1,p}(\Omega) is a fixed boundary datum. Here we show that a Sobolev or Besov–Lipschitz regularity assumption on the gradient of the obstacle 𝜓 transfers to the gradient of the solution, provided the partial map x ↦ D ξ ⁢ f ⁢ ( x , ξ ) x\mapsto D_{\xi}f(x,\xi) belongs to a suitable Sobolev or Besov space. The novelty here is that we deal with sub-quadratic growth conditions with respect to the gradient variable, i.e. f ⁢ ( x , ξ ) ≈ a ⁢ ( x ) ⁢ | ξ | p f(x,\xi)\approx a(x)\lvert\xi\rvert^{p} with 1 < p < 2 1<p<2 , and where the map 𝑎 belongs to a Sobolev or Besov–Lipschitz space.


Author(s):  
Raphaël Danchin ◽  
Piotr Bogusław Mucha ◽  
Patrick Tolksdorf

AbstractWe are concerned with global-in-time existence and uniqueness results for models of pressureless gases that come up in the description of phenomena in astrophysics or collective behavior. The initial data are rough: in particular, the density is only bounded. Our results are based on interpolation and parabolic maximal regularity, where Lorentz spaces play a key role. We establish a novel maximal regularity estimate for parabolic systems in $$L_{q,r}(0,T;L_p(\Omega ))$$ L q , r ( 0 , T ; L p ( Ω ) ) spaces.


1973 ◽  
Vol 51 ◽  
pp. 123-130 ◽  
Author(s):  
Fred Gross ◽  
Chung-Chun Yang ◽  
Charles Osgood

An entire function F(z) = f(g(z)) is said to have f(z) and g(z) as left and right factors respe2tively, provided that f(z) is meromorphic and g(z) is entire (g may be meromorphic when f is rational). F(z) is said to be prime (pseudo-prime) if every factorization of the above form implies that one of the functions f and g is bilinear (a rational function). F is said to be E-prime (E-pseudo prime) if every factorization of the above form into entire factors implies that one of the functions f and g is linear (a polynomial). We recall here that an entire non-periodic function f is prime if and only if it is E-prime [5]. This fact will be useful in the sequel.


2004 ◽  
Vol 49 (2) ◽  
pp. 231-247 ◽  
Author(s):  
Jin Ok Baek ◽  
Qing-Ming Cheng ◽  
Young Jin Suh

Sign in / Sign up

Export Citation Format

Share Document