percentage polarization
Recently Published Documents


TOTAL DOCUMENTS

4
(FIVE YEARS 0)

H-INDEX

1
(FIVE YEARS 0)

1989 ◽  
Vol 136 ◽  
pp. 265-267 ◽  
Author(s):  
Wolfgang Reich

The Galactic Center Arc has been observed with the Effelsberg 100-m telescope at 32 GHz. The percentage polarization is of the order of 50%. The magnetic field structure is uniform in a direction parallel to the Arc.


1982 ◽  
Vol 97 ◽  
pp. 339-340
Author(s):  
M. Inoue ◽  
H. Tabara

In the last decade correlations of the depolarization parameter λd with several parameters, i.e., the radio luminosity L, redshift z, and source size D have been investigated by several authors, where λd is the wavelength at which the percentage polarization drops to its half maximum. Kronberg ET AL. (1972) first pointed out that λd decreases with increasing z, while Morris and Tabara (1973) showed that λd increases with L and suggested that the depolarization is due to the internal Faraday rotation within radio sources. Conway ET AL.(1974), on the other hand, suggested that the λd-(1+z) relation is primary. Recently, Cohen (1979) showed that the λd-z relation may be the remnant of the physically meaningful relation λd-L, though the former is statistically real.


1965 ◽  
Vol 7 ◽  
pp. 57-64
Author(s):  
Thomas Gehrels

The Wavelength Dependence of Polarization as observed in 32 stars, for which the Henry Draper numbers are given, is shown in figure 1. Details of some of these observations are presented in reference 1.The equipment is now being used with the new 154-cm Catalina reflector of the Lunar and Planetary Laboratory at the University of Arizona. The instrumental polarizations are nearly zero. The data processing and observing techniques have been further improved; the precision is mainly determined by statistics such that the internal probable error in the percentage polarization is ±0.03 percent (±0.0006 magnitude) for a half-hour observation per filter on objects brighter than about 7 magnitudes. The wavelength λ ranges from 0.33 to 0.95 μ covered by seven filters of bandwidth of about 0.05 μ. The wavelength range is being extended to 1.2, 1.6, and 2.2 μ and, with high-altitude ballooning, to 0.28 and 0.22 μ.


The dipole radiation emitted by an atom excited by a unidirectional electron beam has a nonuniform angular distribution which is simply related to the percentage polarization P of the radiation emitted perpendicular to the beam. P was first calculated using the OppenheimerPenney (O.-P.) theory. In this theory the probability of excitation of an upper quantum state and the probability of subsequent emission of a polarized photon from such a state are considered independently. P is finally expressed in terms of the cross-sections QM for excitation of states of definite component of angular momentum along the direction of the electron beam. In general, P is dependent on detailed numerical calculations of QM j, but the selection rule A = 0 removes this dependence at threshold. In the O.-P. theory allowance may be made for fine structure and hyperfine structure, but the theory is ambiguous when the f.s. or h.f.s. separations are comparable with the line width. A theory is therefore developed which is based on the calculation of the probability of a polarized photon being emitted by the complete system of atom + electron. The ambiguity of the O.-P. theory is removed by integration over line profiles, but the expressions reduce to O.-P. expressions when the f.s. or h.f.s. separations are much smaller or much larger than the line width. The Lyot line of hydrogen is an intermediate case for which the line widths and the h.f.s. separations are comparable. Assuming the validity of the Born approximation, a simple expression is obtained which allows the QM to be calculated from the angular distribution of the scattered electrons. Theoretical predictions are compared with experimental results. For the Na£) lines the predicted polarization is small enough to escape experimental detection. Polarizations observed by - Skinner & Appleyard in 1927 for various Hg lines rise to maxima with decreasing electron energy, and then tend to values close to zero at threshold. These experimental results at low energies appear to be inexplicable in terms of the reactions considered, but if the polarization curve above the maximum is extrapolated to threshold, the theory and experiment are found to be in reasonable agreement. Further experimental work is thought to be desirable


Sign in / Sign up

Export Citation Format

Share Document