radio luminosity
Recently Published Documents


TOTAL DOCUMENTS

201
(FIVE YEARS 34)

H-INDEX

25
(FIVE YEARS 5)

2022 ◽  
Vol 924 (1) ◽  
pp. 18
Author(s):  
Wonki Lee ◽  
M. James Jee ◽  
Kyle Finner ◽  
Kim HyeongHan ◽  
Ruta Kale ◽  
...  

Abstract We report a discovery of a double radio relic in the cluster merger ZwCl1447.2+2619 (z = 0.376) with uGMRT observations at 420 MHz and 700 MHz. The linear sizes of the northern and southern relics are ∼0.3 Mpc and ∼1.2 Mpc, respectively, which is consistent with the theoretical expectation that a larger relic is produced in the less massive subcluster side. However, ZwCl1447.2+2619 is unlike other known double radio relic systems, where the larger relics are much more luminous by several factors. In this merger, the higher surface brightness of the smaller northern relic makes its total radio luminosity comparable to that of the much larger southern relic. The surface brightness ratio ∼0.1 between the two radio relics differs significantly from the relation observed in other double radio relic systems. From our radio spectral analysis, we find that both relics signify similar weak shocks with Mach numbers of 2.9 ± 0.8 and 2.0 ± 0.7 for the northern and southern relics, respectively. Moreover, the northern relic is connected to a discrete radio source with an optical counterpart, which indicates the possible presence of cosmic-ray injection and reacceleration. Therefore, we propose that this atypical surface brightness ratio can be explained with the particle acceleration efficiency precipitously dropping in the weak shock regime and/or with reacceleration of fossil cosmic rays. Our multi-wavelength analysis and numerical simulation suggest that ZwCl1447.2+2619 is a postmerger, which has experienced a near head-on collision ∼0.7 Gyr ago.


2021 ◽  
Author(s):  
◽  
Siamak Dehghan

<p>This thesis presents an investigation of the habitat of extended radio sources, and the way in which the generation and properties of these radio sources are affected by environmental factors. We begin with a detailed structure analysis of the 0.3 deg² area of the MUSYC-ACES field, generated by applying a density-based clustering method, known as DBSCAN, to our spectroscopic and photometric samples of the field. As a result, we identify 62 over-dense regions across the field. Based on the properties of the detected structures, we classify 13 as clusters, of which 90% are associated with diffuse soft-band X-ray emission. This provides a strong and independent confirmation that both the clustering and classification methodologies are reliable for use in investigation of the environment of the radio sources in the Chandra Deep Field South (CDFS).  Using an interpolation-based method followed by a new calibration technique of using clusters of similar mass as standard candles, we are able to estimate the local environmental richness for a desired region. This methodology is applied to a sample of AGNs and star forming galaxies in the CDFS to probe whether or not the radio luminosity of the different radio sources is correlated to their environments. As a result, we do not find a significant correlation between the radio luminosity and the environment of star-forming galaxies and radio-quiet AGNs, however, a weak positive dependency is spotted for radio-loud AGNs. This may indicate that over-populated environments trigger or enhance the radio activity processes in the AGNs. We find that star-forming galaxies, unlike radio-loud AGNs, tend to avoid overpopulated environments especially at low redshifts. However, radio-loud AGN are found in both poor and rich environments. As a result, we find neither of these radio sources suitable for tracing the over-dense regions of the Universe, unlike tailed radio galaxies.  It is believed that tailed radio galaxies reside in the dense environments of clusters and groups, and therefore, may be the signatures of overdensities in large-scale structure. To evaluate the idea of using tailed radio galaxies as tracers of dense environments, a systematic study of these sources as a function of density is required. For this reason and by using the 1.4 GHz Australia Telescope Large Area Survey (ATLAS) data, we examined over four deg² area of the ATLAS-CDFS field, which includes the entire CDFS. We present a catalogue of 56 non-linear, extended, and low surface brightness sources including 45 tailed radio galaxies, two relic candidates, and a possible radio halo. We report the detection of the most distant tailed radio galaxy to date, at a redshift of 2.1688. In addition, despite the lack of deep spectroscopic data in the ATLAS field, we find two of the detected tailed radio galaxies are associated with clusters. We find three Head-Tail galaxy candidates in the CDFS field, all of which are located at high redshifts, where the magnitude constraint of our redshift sample prevents any structure detection.  One of the primary objectives of this research is to investigate the association between the morphology of tailed radio galaxies and the physical characteristics of the surrounding environment. In order to understand the role of the variety of factors that influence the radio morphology, we constructed a simple model that generates the overall radio structure of the sources in different habitats. We report the results of the simulation of the wide-angle tail radio galaxy PKS J0334-3900, which shows that both the gravitation interactions and a cluster wind are required to generate the observed radio tails. As a result, we find the morphology of the tailed radio galaxies as an invaluable tool to probe environmental characteristics.  In a supplementary study, we investigate the role of cluster dynamics on generation and alternation of extended radio sources. We present a comprehensive structure and sub-structure analysis of the Abell 3266 galaxy cluster. Based on the results of the sub-structure test, position and orientation of a radio relic candidate, and morphology of a prominent tailed radio galaxy in the cluster, we propose an ongoing merger scenario for this chaotic cluster environment. Furthermore, we verify our theory by an N-body simulation of a pre-merger cluster and an in-falling group. The results of the simulation supports our merger scenario by explaining both the orientation of the radio relic and the observed morphology of the tailed radio galaxy.  While there is a weak correlation between the luminosity of radio-loud AGNs and environmental density, tailed radio galaxies make superior probes of over-dense regions. Thus, overall we find tailed radio galaxies can be used to trace overdensities out to z ~ 2 and probe the details of the environments in which they are found.</p>


2021 ◽  
Author(s):  
◽  
Siamak Dehghan

<p>This thesis presents an investigation of the habitat of extended radio sources, and the way in which the generation and properties of these radio sources are affected by environmental factors. We begin with a detailed structure analysis of the 0.3 deg² area of the MUSYC-ACES field, generated by applying a density-based clustering method, known as DBSCAN, to our spectroscopic and photometric samples of the field. As a result, we identify 62 over-dense regions across the field. Based on the properties of the detected structures, we classify 13 as clusters, of which 90% are associated with diffuse soft-band X-ray emission. This provides a strong and independent confirmation that both the clustering and classification methodologies are reliable for use in investigation of the environment of the radio sources in the Chandra Deep Field South (CDFS).  Using an interpolation-based method followed by a new calibration technique of using clusters of similar mass as standard candles, we are able to estimate the local environmental richness for a desired region. This methodology is applied to a sample of AGNs and star forming galaxies in the CDFS to probe whether or not the radio luminosity of the different radio sources is correlated to their environments. As a result, we do not find a significant correlation between the radio luminosity and the environment of star-forming galaxies and radio-quiet AGNs, however, a weak positive dependency is spotted for radio-loud AGNs. This may indicate that over-populated environments trigger or enhance the radio activity processes in the AGNs. We find that star-forming galaxies, unlike radio-loud AGNs, tend to avoid overpopulated environments especially at low redshifts. However, radio-loud AGN are found in both poor and rich environments. As a result, we find neither of these radio sources suitable for tracing the over-dense regions of the Universe, unlike tailed radio galaxies.  It is believed that tailed radio galaxies reside in the dense environments of clusters and groups, and therefore, may be the signatures of overdensities in large-scale structure. To evaluate the idea of using tailed radio galaxies as tracers of dense environments, a systematic study of these sources as a function of density is required. For this reason and by using the 1.4 GHz Australia Telescope Large Area Survey (ATLAS) data, we examined over four deg² area of the ATLAS-CDFS field, which includes the entire CDFS. We present a catalogue of 56 non-linear, extended, and low surface brightness sources including 45 tailed radio galaxies, two relic candidates, and a possible radio halo. We report the detection of the most distant tailed radio galaxy to date, at a redshift of 2.1688. In addition, despite the lack of deep spectroscopic data in the ATLAS field, we find two of the detected tailed radio galaxies are associated with clusters. We find three Head-Tail galaxy candidates in the CDFS field, all of which are located at high redshifts, where the magnitude constraint of our redshift sample prevents any structure detection.  One of the primary objectives of this research is to investigate the association between the morphology of tailed radio galaxies and the physical characteristics of the surrounding environment. In order to understand the role of the variety of factors that influence the radio morphology, we constructed a simple model that generates the overall radio structure of the sources in different habitats. We report the results of the simulation of the wide-angle tail radio galaxy PKS J0334-3900, which shows that both the gravitation interactions and a cluster wind are required to generate the observed radio tails. As a result, we find the morphology of the tailed radio galaxies as an invaluable tool to probe environmental characteristics.  In a supplementary study, we investigate the role of cluster dynamics on generation and alternation of extended radio sources. We present a comprehensive structure and sub-structure analysis of the Abell 3266 galaxy cluster. Based on the results of the sub-structure test, position and orientation of a radio relic candidate, and morphology of a prominent tailed radio galaxy in the cluster, we propose an ongoing merger scenario for this chaotic cluster environment. Furthermore, we verify our theory by an N-body simulation of a pre-merger cluster and an in-falling group. The results of the simulation supports our merger scenario by explaining both the orientation of the radio relic and the observed morphology of the tailed radio galaxy.  While there is a weak correlation between the luminosity of radio-loud AGNs and environmental density, tailed radio galaxies make superior probes of over-dense regions. Thus, overall we find tailed radio galaxies can be used to trace overdensities out to z ~ 2 and probe the details of the environments in which they are found.</p>


2021 ◽  
Author(s):  
◽  
Rowan Miller

<p>A growing number of radio studies probe galaxy clusters into the low-power regime in which star formation is the dominant source of radio emission. However, at the time of writing no comparably deep observations have focused exclusively on the radio populations of cosmic filaments. This thesis describes the ATCA 2.1 GHz observations and subsequent analysis of two such regions - labelled Zone 1 (between clusters A3158 and A3125/A3128) and Zone 2 (between A3135 and A3145) - in the Horologium-Reticulum Supercluster (HRS). Source count profiles of both populations are discussed and a radio luminosity function for Zone 1 is generated. While the source counts of Zone 2 appear to be consistent with expected values, Zone 1 exhibits an excess of counts across a wide flux range (1 mJy</p>


2021 ◽  
Author(s):  
◽  
Rowan Miller

<p>A growing number of radio studies probe galaxy clusters into the low-power regime in which star formation is the dominant source of radio emission. However, at the time of writing no comparably deep observations have focused exclusively on the radio populations of cosmic filaments. This thesis describes the ATCA 2.1 GHz observations and subsequent analysis of two such regions - labelled Zone 1 (between clusters A3158 and A3125/A3128) and Zone 2 (between A3135 and A3145) - in the Horologium-Reticulum Supercluster (HRS). Source count profiles of both populations are discussed and a radio luminosity function for Zone 1 is generated. While the source counts of Zone 2 appear to be consistent with expected values, Zone 1 exhibits an excess of counts across a wide flux range (1 mJy</p>


2021 ◽  
Vol 922 (1) ◽  
pp. 52
Author(s):  
Agnieszka Kuźmicz ◽  
Sagar Sethi ◽  
Marek Jamrozy

Abstract We present the composite optical spectrum for the largest sample of giant radio quasars (GRQs). They represent a rare subclass of radio quasars due to their large projected linear sizes of radio structures, which exceed 0.7 Mpc. To construct the composite spectrum, we combined the optical spectra of 216 GRQs from the Sloan Digital Sky Survey (SDSS). As a result, we obtained the composite spectrum covering the wavelength range from 1400 Å to 7000 Å. We calculated the power-law spectral slope for the GRQ’s composite, obtaining α λ = −1.25, and compared it with that of the smaller-sized radio quasars, as well as with the quasar composite spectrum obtained for a large sample of SDSS quasars. We obtained that the GRQ’s continuum is flatter (redder) than the continuum of comparison quasar samples. We also show that the continuum slope depends on core and total radio luminosity at 1.4 GHz, being steeper for higher radio luminosity bins. Moreover, we found that there is a flattening of the continuum with the increase in the projected linear size of the radio quasar. We show that α λ is orientation-dependent, being steeper for a higher radio core-to-lobe flux density ratio, which is consistent with AGN unified model predictions. For two GRQs, we fit the spectral energy distribution using the X-CIGALE code to compare the consistency of results obtained in the optical part of the electromagnetic spectrum with broadband emission. The parameters obtained from the SED fitting confirmed the larger dust luminosity for the redder optical continuum.


2021 ◽  
Vol 648 ◽  
pp. A102
Author(s):  
E. Vardoulaki ◽  
E. F. Jiménez Andrade ◽  
I. Delvecchio ◽  
V. Smolčić ◽  
E. Schinnerer ◽  
...  

Context. Radio active galactic nuclei (AGN) are traditionally separated into two Fanaroff-Riley (FR) type classes, edge-brightened FRII sources or edge-darkened FRI sources. With the discovery of a plethora of radio AGN of different radio shapes, this dichotomy is becoming too simplistic in linking the radio structure to the physical properties of radio AGN, their hosts, and their environment. Aims. We probe the physical properties and large-scale environment of radio AGN in the faintest FR population to date, and link them to their radio structure. We use the VLA-COSMOS Large Project at 3 GHz (3 GHz VLA-COSMOS), with a resolution and sensitivity of 0.″75 and 2.3 μJy beam−1 to explore the FR dichotomy down to μJy levels. Methods. We classified objects as FRIs, FRIIs, or hybrid FRI/FRII based on the surface-brightness distribution along their radio structure. Our control sample was the jet-less/compact radio AGN objects (COM AGN), which show excess radio emission at 3 GHz VLA-COSMOS exceeding what is coming from star-formation alone; this sample excludes FRs. The largest angular projected sizes of FR objects were measured by a machine-learning algorithm and also by hand, following a parametric approach to the FR classification. Eddington ratios were calculated using scaling relations from the X-rays, and we included the jet power by using radio luminosity as a probe. Furthermore, we investigated their host properties (star-formation ratio, stellar mass, morphology), and we explore their incidence within X-ray galaxy groups in COSMOS, and in the density fields and cosmic-web probes in COSMOS. Results. Our sample is composed of 59 FRIIs, 32 FRI/FRIIs, 39 FRIs, and 1818 COM AGN at 0.03 ≤ z ≤ 6. On average, FR objects have similar radio luminosities (L3 GHz ∼ 1023 W Hz−1 sr−1), spanning a range of 1021−26 W Hz−1 sr−1, and they lie at a median redshift of z ∼ 1. The median linear projected size of FRIIs is 106.636.9238.2 kpc, larger than that of FRI/FRIIs and FRIs by a factor of 2−3. The COM AGN have sizes smaller than 30 kpc, with a median value of 1.71.54.7 kpc. The median Eddington ratio of FRIIs is 0.0060.0050.007, a factor of 2.5 less than in FRIs and a factor of 2 higher than in FRI/FRII. When the jet power is included, the median Eddington ratios of FRII and FRI/FRII increase by a factor of 12 and 15, respectively. FRs reside in their majority in massive quenched hosts (M* > 1010.5 M⊙), with older episodes of star-formation linked to lower X-ray galaxy group temperatures, suggesting radio-mode AGN quenching. Regardless of their radio structure, FRs and COM AGN are found in all types and density environments (group or cluster, filaments, field). Conclusions. By relating the radio structure to radio luminosity, size, Eddington ratio, and large-scale environment, we find a broad distribution and overlap of FR and COM AGN populations. We discuss the need for a different classification scheme, that expands the classic FR classification by taking into consideration the physical properties of the objects rather than their projected radio structure which is frequency-, sensitivity- and resolution-dependent. This point is crucial in the advent of current and future all-sky radio surveys.


2021 ◽  
Vol 503 (2) ◽  
pp. 1780-1797
Author(s):  
M E Jarvis ◽  
C M Harrison ◽  
V Mainieri ◽  
D M Alexander ◽  
F Arrigoni Battaia ◽  
...  

ABSTRACT We present the first results from the Quasar Feedback Survey, a sample of 42 z &lt; 0.2, [O iii] luminous AGNs ( L[O III] &gt; 1042.1 ergs s−1) with moderate radio luminosities (i.e. L1.4GHz &gt; 1023.4 W Hz−1; median L1.4GHz = 5.9 × 1023 W Hz−1). Using high spatial resolution (∼0.3–1 arcsec), 1.5–6 GHz radio images from the Very Large Array, we find that 67 per cent of the sample have spatially extended radio features on ∼1–60 kpc scales. The radio sizes and morphologies suggest that these may be lower radio luminosity versions of compact, radio-loud AGNs. By combining the radio-to-infrared excess parameter, spectral index, radio morphology, and brightness temperature, we find radio emission in at least 57 per cent of the sample that is associated with AGN-related processes (e.g. jets, quasar-driven winds, or coronal emission). This is despite only 9.5–21 per cent being classified as radio-loud using traditional criteria. The origin of the radio emission in the remainder of the sample is unclear. We find that both the established anticorrelation between radio size and the width of the [O   iii] line, and the known trend for the most [O iii] luminous AGNs to be associated with spatially extended radio emission, also hold for our sample of moderate radio luminosity quasars. These observations add to the growing evidence of a connection between the radio emission and ionized gas in quasar host galaxies. This work lays the foundation for deeper investigations into the drivers and impact of feedback in this unique sample.


Sign in / Sign up

Export Citation Format

Share Document