parabigeminal nucleus
Recently Published Documents


TOTAL DOCUMENTS

36
(FIVE YEARS 0)

H-INDEX

19
(FIVE YEARS 0)

2020 ◽  
Vol 124 (6) ◽  
pp. 1968-1985
Author(s):  
Kota Tokuoka ◽  
Masatoshi Kasai ◽  
Kenta Kobayashi ◽  
Tadashi Isa

The modulatory role of the cholinergic inputs from the parabigeminal nucleus in the visual responses in the superficial superior colliculus (sSC) remains unknown. Here we report that the cholinergic projections terminate densely in the medial sSC and optogenetic manipulations of the cholinergic inputs affect the looming-evoked response and enhance surround inhibition in the sSC. Our data suggest that cholinergic inputs to the sSC contribute to the visual detection of predators.



2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Alfonso Deichler ◽  
Denisse Carrasco ◽  
Luciana Lopez-Jury ◽  
Tomas Vega-Zuniga ◽  
Natalia Márquez ◽  
...  

Abstract The parabigeminal nucleus (PBG) is the mammalian homologue to the isthmic complex of other vertebrates. Optogenetic stimulation of the PBG induces freezing and escape in mice, a result thought to be caused by a PBG projection to the central nucleus of the amygdala. However, the isthmic complex, including the PBG, has been classically considered satellite nuclei of the Superior Colliculus (SC), which upon stimulation of its medial part also triggers fear and avoidance reactions. As the PBG-SC connectivity is not well characterized, we investigated whether the topology of the PBG projection to the SC could be related to the behavioral consequences of PBG stimulation. To that end, we performed immunohistochemistry, in situ hybridization and neural tracer injections in the SC and PBG in a diurnal rodent, the Octodon degus. We found that all PBG neurons expressed both glutamatergic and cholinergic markers and were distributed in clearly defined anterior (aPBG) and posterior (pPBG) subdivisions. The pPBG is connected reciprocally and topographically to the ipsilateral SC, whereas the aPBG receives afferent axons from the ipsilateral SC and projected exclusively to the contralateral SC. This contralateral projection forms a dense field of terminals that is restricted to the medial SC, in correspondence with the SC representation of the aerial binocular field which, we also found, in O. degus prompted escape reactions upon looming stimulation. Therefore, this specialized topography allows binocular interactions in the SC region controlling responses to aerial predators, suggesting a link between the mechanisms by which the SC and PBG produce defensive behaviors.



eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Katja Reinhard ◽  
Chen Li ◽  
Quan Do ◽  
Emily G Burke ◽  
Steven Heynderickx ◽  
...  

Using sensory information to trigger different behaviors relies on circuits that pass through brain regions. The rules by which parallel inputs are routed to downstream targets are poorly understood. The superior colliculus mediates a set of innate behaviors, receiving input from >30 retinal ganglion cell types and projecting to behaviorally important targets including the pulvinar and parabigeminal nucleus. Combining transsynaptic circuit tracing with in vivo and ex vivo electrophysiological recordings, we observed a projection-specific logic where each collicular output pathway sampled a distinct set of retinal inputs. Neurons projecting to the pulvinar or the parabigeminal nucleus showed strongly biased sampling from four cell types each, while six others innervated both pathways. The visual response properties of retinal ganglion cells correlated well with those of their disynaptic targets. These findings open the possibility that projection-specific sampling of retinal inputs forms a basis for the selective triggering of behaviors by the superior colliculus.



2018 ◽  
Author(s):  
Katja Reinhard ◽  
Chen Li ◽  
Quan Do ◽  
Emily Burke ◽  
Steven Heynderickx ◽  
...  

AbstractUsing sensory information to trigger different behaviours relies on circuits that pass-through brain regions. However, the rules by which parallel inputs are routed to different downstream targets is poorly understood. The superior colliculus mediates a set of innate behaviours, receiving input from ~30 retinal ganglion cell types and projecting to behaviourally important targets including the pulvinar and parabigeminal nucleus. Combining transsynaptic circuit tracing with in-vivo and ex-vivo electrophysiological recordings we observed a projection specific logic where each collicular output pathway sampled a distinct set of retinal inputs. Neurons projecting to the pulvinar or parabigeminal nucleus uniquely sampled 4 and 7 cell types, respectively. Four others innervated both pathways. The visual response properties of retinal ganglion cells correlated well with those of their disynaptic targets. These findings suggest that projection specific sampling of retinal inputs forms a mechanistic basis for the selective triggering of visually guided behaviours by the superior colliculus.



2013 ◽  
Vol 109 (8) ◽  
pp. 2029-2043 ◽  
Author(s):  
Rui Ma ◽  
He Cui ◽  
Sang-Hun Lee ◽  
Thomas J. Anastasio ◽  
Joseph G. Malpeli

Intercepting momentarily invisible moving objects requires internally generated estimations of target trajectory. We demonstrate here that the parabigeminal nucleus (PBN) encodes such estimations, combining sensory representations of target location, extrapolated positions of briefly obscured targets, and eye position information. Cui and Malpeli (Cui H, Malpeli JG. J Neurophysiol 89: 3128–3142, 2003) reported that PBN activity for continuously visible tracked targets is determined by retinotopic target position. Here we show that when cats tracked moving, blinking targets the relationship between activity and target position was similar for ON and OFF phases (400 ms for each phase). The dynamic range of activity evoked by virtual targets was 94% of that of real targets for the first 200 ms after target offset and 64% for the next 200 ms. Activity peaked at about the same best target position for both real and virtual targets. PBN encoding of target position takes into account changes in eye position resulting from saccades, even without visual feedback. Since PBN response fields are retinotopically organized, our results suggest that activity foci associated with real and virtual targets at a given target position lie in the same physical location in the PBN, i.e., a retinotopic as well as a rate encoding of virtual-target position. We also confirm that PBN activity is specific to the intended target of a saccade and is predictive of which target will be chosen if two are offered. A Bayesian predictor-corrector model is presented that conceptually explains the differences in the dynamic ranges of PBN neuronal activity evoked during tracking of real and virtual targets.



2007 ◽  
Vol 98 (6) ◽  
pp. 3486-3493 ◽  
Author(s):  
C. Alex Goddard ◽  
Eric I. Knudsen ◽  
John R. Huguenard

Cholinergic neurons in the parabigeminal nucleus of the rat midbrain were studied in an acute slice preparation. Spontaneous, regular action potentials were observed both with cell-attached patch recordings as well as with whole cell current-clamp recordings. The spontaneous activity of parabigeminal nucleus (PBN) neurons was not due to synaptic input as it persisted in the presence of the pan-ionotropic excitatory neurotransmitter receptor blocker, kynurenic acid, and the cholinergic blockers dihydro-beta-erythroidine (DHβE) and atropine. This result suggests the existence of intrinsic currents that enable spontaneous activity. In voltage-clamp recordings, IH and IA currents were observed in most PBN neurons. IA had voltage-dependent features that would permit it to contribute to spontaneous firing. In contrast, IH was significantly activated at membrane potentials lower than the trough of the spike afterhyperpolarization, suggesting that IH does not contribute to spontaneous firing of PBN neurons. Consistent with this interpretation, application of 25 μM ZD-7288, which blocked IH, did not affect the rate of spontaneous firing in PBN neurons. Counterparts to IA and IH were observed in current-clamp recordings: IA was reflected as a slow voltage ramp observed between action potentials and on release from hyperpolarization, and IH was reflected as a depolarizing sag often accompanied by rebound spikes in response to hyperpolarizing current injections. In response to depolarizing current injections, PBN neurons fired at high frequencies, with relatively little accommodation. Ultimately, the spontaneous activity in PBN neurons could be used to modulate cholinergic drive in the superior colliculus in either positive or negative directions.



2007 ◽  
Vol 1133 ◽  
pp. 87-91 ◽  
Author(s):  
Kamen G. Usunoff ◽  
Oliver Schmitt ◽  
Dimitar E. Itzev ◽  
Arndt Rolfs ◽  
Andreas Wree




Sign in / Sign up

Export Citation Format

Share Document