proteoglycan aggregates
Recently Published Documents


TOTAL DOCUMENTS

75
(FIVE YEARS 0)

H-INDEX

24
(FIVE YEARS 0)

2004 ◽  
Vol 12 (11) ◽  
pp. 904-911 ◽  
Author(s):  
Hafida El Hajjaji ◽  
James M. Williams ◽  
Jean-Pierre Devogelaer ◽  
Mary Ellen Lenz ◽  
Eugene J.-M.A. Thonar ◽  
...  

2004 ◽  
Vol 85 (4) ◽  
pp. A76-A77 ◽  
Author(s):  
A.D. Waggett ◽  
S.G. Rees ◽  
B. Caterson

2003 ◽  
Vol 375 (1) ◽  
pp. 183-189 ◽  
Author(s):  
Peter J. ROUGHLEY ◽  
James BARNETT ◽  
Fengrong ZUO ◽  
John S. MORT

Proteoglycan aggregates and purified aggrecan from adult and fetal bovine cartilage and adult and neonatal human cartilage were subjected to in vitro degradation by recombinant aggrecanase-1 and aggrecanase-2. The ability of the aggrecanases to cleave within the aggrecan IGD (interglobular domain) and CS2 domain (chondroitin sulphate-rich domain 2) was monitored by SDS/PAGE and immunoblotting. Aggrecanase-2 showed a similar ability to cleave within the IGD of adult and immature aggrecan, whereas aggrecanase-1 was less efficient in cleavage in the IGD of immature aggrecan, for both the bovine and the human substrates. Both aggrecanases showed a similar ability to cleave within the CS2 domain of bovine aggrecan irrespective of age, but showed a much lower ability to cleave within the CS2 domain of human aggrecan. Equivalent results were obtained whether aggrecan was present in isolation or as part of proteoglycan aggregates. When proteoglycan aggregates were used, neither aggrecanase was able to cleave link protein. Thus, for aggrecan cleavage by aggrecanases, variations in cleavage efficiency exist with respect to the species and age of the animal from which the aggrecan is derived and the type of aggrecanase being used.


2003 ◽  
Vol 370 (1) ◽  
pp. 69-79 ◽  
Author(s):  
Terri WELLS ◽  
Catherine DAVIDSON ◽  
Matthias MÖRGELIN ◽  
Joseph L.E. BIRD ◽  
Michael T. BAYLISS ◽  
...  

The heterogeneity of the components of proteoglycan aggregates, their stoichiometry within the aggregate and the aggregates’ stability was investigated in normal human articular cartilage specimens (age-range newborn to 63 years). Proteoglycans were extracted from tissue by sequentially extracting them with PBS alone, PBS containing oligosaccharides of hyaluronan, and PBS containing solutions of increasing guanidinium chloride concentration (1M, 2M, 3M and 4M). A high proportion of each of the components of the proteoglycan aggregate, i.e. uronic acid, sulphated glycosaminoglycan, hyaluronan binding domain of aggrecan (G1-domain), link protein (LP) and hyaluronan, was extracted from immature cartilage by PBS alone and PBS containing oligosaccharides of hyaluronan. This was in marked contrast to adult cartilage, which required high concentrations of guanidinium chloride for the efficient extraction of these components. The molar ratios of total G1-domain:LP and the G1-domain associated with aggrecan:LP also differed markedly between immature and mature cartilage and between each of the sequential extracts. The concentration of LP was less than that of the G1-domain in all extracts of cartilage from individuals over 13 years, but this was particularly noticeable in the 1M guanidinium chloride extracts, and it was surmised that a deficiency in LP produces unstable aggregates in situ. The fragmentation of LP, which is known to occur with advancing age, did not influence the extractability of LP, and fragments were present in each of the sequential extracts. Therefore the generally accepted model of proteoglycan aggregation presented in the literature, which is mostly derived from analysis of immature animal cartilage, cannot be used to describe the structure and organization of aggregates in adult human articular cartilage, where a heterogeneous population of complexes exist that have varying degrees of stability.


Sign in / Sign up

Export Citation Format

Share Document