matrix vesicles
Recently Published Documents


TOTAL DOCUMENTS

360
(FIVE YEARS 28)

H-INDEX

49
(FIVE YEARS 4)

2021 ◽  
Vol 22 (22) ◽  
pp. 12391
Author(s):  
Woojin Na ◽  
Min-Kyung Kang ◽  
Sin-Hye Park ◽  
Dong Yeon Kim ◽  
Su Yeon Oh ◽  
...  

The imbalance between bone resorption and bone formation in favor of resorption results in bone loss and deterioration of bone architecture. Osteoblast differentiation is a sequential event accompanying biogenesis of matrix vesicles and mineralization of collagen matrix with hydroxyapatite crystals. Considerable efforts have been made in developing naturally-occurring plant compounds, preventing bone pathologies, or enhancing bone regeneration. Coumarin aesculetin inhibits osteoporosis through hampering the ruffled border formation of mature osteoclasts. However, little is known regarding the effects of aesculetin on the impairment of matrix vesicle biogenesis. MC3T3-E1 cells were cultured in differentiation media with 1–10 μM aesculetin for up to 21 days. Aesculetin boosted the bone morphogenetic protein-2 expression, and alkaline phosphatase activation of differentiating MC3T3-E1 cells. The presence of aesculetin strengthened the expression of collagen type 1 and osteoprotegerin and transcription of Runt-related transcription factor 2 in differentiating osteoblasts for 9 days. When ≥1–5 μM aesculetin was added to differentiating cells for 15–18 days, the induction of non-collagenous proteins of bone sialoprotein II, osteopontin, osteocalcin, and osteonectin was markedly enhanced, facilitating the formation of hydroxyapatite crystals and mineralized collagen matrix. The induction of annexin V and PHOSPHO 1 was further augmented in ≥5 μM aesculetin-treated differentiating osteoblasts for 21 days. In addition, the levels of tissue-nonspecific alkaline phosphatase and collagen type 1 were further enhanced within the extracellular space and on matrix vesicles of mature osteoblasts treated with aesculetin, indicating matrix vesicle-mediated bone mineralization. Finally, aesculetin markedly accelerated the production of thrombospondin-1 and tenascin C in mature osteoblasts, leading to their adhesion to preformed collagen matrix. Therefore, aesculetin enhanced osteoblast differentiation, and matrix vesicle biogenesis and mineralization. These findings suggest that aesculetin may be a potential osteo-inductive agent preventing bone pathologies or enhancing bone regeneration.


Author(s):  
Ana Paula Ramos ◽  
Mayte Bolean ◽  
Marcos A. E. Cruz ◽  
Luiz H. S. Andrilli ◽  
Lucas F. B. Nogueira ◽  
...  

Author(s):  
Mechiel Nieuwoudt ◽  
Ian Woods ◽  
Kian F. Eichholz ◽  
Carolina Martins ◽  
Kate McSweeney ◽  
...  

AbstractSynthetic polymeric materials have demonstrated great promise for bone tissue engineering based on their compatibility with a wide array of scaffold-manufacturing techniques, but are limited in terms of the bioactivity when compared to naturally occurring materials. To enhance the regenerative properties of these materials, they are commonly functionalised with bioactive factors to guide growth within the developing tissue. Extracellular matrix vesicles (EVs) play an important role in facilitating endochondral ossification during long bone development and have recently emerged as important mediators of cell-cell communication coordinating bone regeneration, and thus represent an ideal target to enhance the regenerative properties of synthetic scaffolds. Therefore, in this paper we developed tools and protocols to enable the attachment of MLO-Y4 osteocyte-derived EVs onto electrospun polycaprolactone (PCL) scaffolds for bone repair. Initially, we optimize a method for the functionalization of PCL materials with collagen type-1 and fibronectin, inspired by the behaviour of matrix vesicles during endochondral ossification, and demonstrate that this is an effective method for the adhesion of EVs to the material surface. We then used this functionalization process to attach osteogenic EVs, collected from mechanically stimulated MLO-Y4 osteocytes, to collagen-coated electrospun PCL scaffolds. The EV-functionalized scaffold promoted osteogenic differentiation (measured by increased ALP activity) and mineralization of the matrix. In particular, EV-functionalised scaffolds exhibited significant increases in matrix mineralization particularly at earlier time points compared to uncoated and collagen-coated controls. This approach to matrix-based adhesion of EVs provides a mechanism for incorporating vesicle signalling into polyester scaffolds and demonstrates the potential of osteocyte derived EVs to enhance the rate of bone tissue regeneration.


2021 ◽  
pp. 1358863X2110247
Author(s):  
Neal X Chen ◽  
Kalisha D O’Neill ◽  
James M Dominguez ◽  
Sharon M Moe

Introduction: Increased oxidative stress is associated with vascular calcification in patients with chronic kidney disease (CKD). We have previously demonstrated that cellular-derived matrix vesicles (MV), but not media-derived MV, are endocytosed in the presence of phosphorus by recipient normal rat vascular smooth muscle cells (VSMC) and induce calcification through ERK1/2 and [Ca2+]i signaling. We hypothesized that these changes were mediated by increased reactive oxygen species (ROS) production. Methods: MV were co-cultured with recipient VSMC in the presence of high phosphorus and ROS production and cell signaling assessed. Results: The results demonstrated MV endocytosis led to increased ROS production in recipient VSMC with no increase in mitochondrial oxygen consumption or oxidative phosphorylation (OXPHOS), indicating the ROS was not from the mitochondria. The use of inhibitors demonstrated that endocytosis of these MV by VSMC led to a signaling cascade in the cytoplasm beginning with ERK1/2 signaling, then increased [Ca2+]i and stimulation of ROS production, mediated by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX)1/4. Media-derived MV did not induce this cascade, indicating endocytosis itself was not a factor. Furthermore, inhibition of either ERK1/2 activation or [Ca2+]i reduced vascular calcification. Conclusion: We conclude that endocytosis of pro-mineralizing MV can induce a series of signaling events in normal VSMC that culminate in generation of ROS via activation of NOX1/4. Understanding these pathways will allow the development of future targeted therapeutics.


2021 ◽  
Vol 22 (8) ◽  
pp. 3993
Author(s):  
Lukasz Bozycki ◽  
Joanna Mroczek ◽  
Laurence Bessueille ◽  
Saida Mebarek ◽  
René Buchet ◽  
...  

The mineralization process is initiated by osteoblasts and chondrocytes during intramembranous and endochondral ossifications, respectively. Both types of cells release matrix vesicles (MVs), which accumulate Pi and Ca2+ and form apatites in their lumen. Tissue non-specific alkaline phosphatase (TNAP), a mineralization marker, is highly enriched in MVs, in which it removes inorganic pyrophosphate (PPi), an inhibitor of apatite formation. MVs then bud from the microvilli of mature osteoblasts or hypertrophic chondrocytes and, thanks to the action of the acto-myosin cortex, become released to the extracellular matrix (ECM), where they bind to collagen fibers and propagate mineral growth. In this report, we compared the mineralization ability of human fetal osteoblastic cell line (hFOB 1.19 cells) with that of osteosarcoma cell line (Saos-2 cells). Both types of cells were able to mineralize in an osteogenic medium containing ascorbic acid and beta glycerophosphate. The composition of calcium and phosphate compounds in cytoplasmic vesicles was distinct from that in extracellular vesicles (mostly MVs) released after collagenase-digestion. Apatites were identified only in MVs derived from Saos-2 cells, while MVs from hFOB 1.19 cells contained amorphous calcium phosphate complexes. In addition, AnxA6 and AnxA2 (nucleators of mineralization) increased mineralization in the sub-membrane region in strongly mineralizing Saos-2 osteosarcoma, where they co-localized with TNAP, whereas in less mineralizing hFOB 1.19 osteoblasts, AnxA6, and AnxA2 co-localizations with TNAP were less visible in the membrane. We also observed a reduction in the level of fetuin-A (FetuA), an inhibitor of mineralization in ECM, following treatment with TNAP and Ca channels inhibitors, especially in osteosarcoma cells. Moreover, a fraction of FetuA was translocated from the cytoplasm towards the plasma membrane during the stimulation of Saos-2 cells, while this displacement was less pronounced in stimulated hFOB 19 cells. In summary, osteosarcoma Saos-2 cells had a better ability to mineralize than osteoblastic hFOB 1.19 cells. The formation of apatites was observed in Saos-2 cells, while only complexes of calcium and phosphate were identified in hFOB 1.19 cells. This was also evidenced by a more pronounced accumulation of AnxA2, AnxA6, FetuA in the plasma membrane, where they were partly co-localized with TNAP in Saos-2 cells, in comparison to hFOB 1.19 cells. This suggests that both activators (AnxA2, AnxA6) and inhibitors (FetuA) of mineralization were recruited to the membrane and co-localized with TNAP to take part in the process of mineralization.


2021 ◽  
Vol 14 (4) ◽  
pp. 289
Author(s):  
Sana Ansari ◽  
Bregje W. M. de de Wildt ◽  
Michelle A. M. Vis ◽  
Carolina E. de de Korte ◽  
Keita Ito ◽  
...  

Bone is a complex organ maintained by three main cell types: osteoblasts, osteoclasts, and osteocytes. During bone formation, osteoblasts deposit a mineralized organic matrix. Evidence shows that bone cells release extracellular vesicles (EVs): nano-sized bilayer vesicles, which are involved in intercellular communication by delivering their cargoes through protein–ligand interactions or fusion to the plasma membrane of the recipient cell. Osteoblasts shed a subset of EVs known as matrix vesicles (MtVs), which contain phosphatases, calcium, and inorganic phosphate. These vesicles are believed to have a major role in matrix mineralization, and they feature bone-targeting and osteo-inductive properties. Understanding their contribution in bone formation and mineralization could help to target bone pathologies or bone regeneration using novel approaches such as stimulating MtV secretion in vivo, or the administration of in vitro or biomimetically produced MtVs. This review attempts to discuss the role of MtVs in biomineralization and their potential application for bone pathologies and bone regeneration.


2021 ◽  
Vol 22 (2) ◽  
pp. 913
Author(s):  
Anna Di Vito ◽  
Annalidia Donato ◽  
Ivan Presta ◽  
Teresa Mancuso ◽  
Francesco Saverio Brunetti ◽  
...  

Calcific Aortic Valve Disease (CAVD) is the most common valvular heart disease in developed countries and in the ageing population. It is strongly correlated to median age, affecting up to 13% of the population over the age of 65. Pathophysiological analysis indicates CAVD as a result of an active and degenerative disease, starting with sclerosis and chronic inflammation and then leaflet calcification, which ultimately can account for aortic stenosis. Although CAVD has been firstly recognized as a passive event mostly resulting from a degenerative aging process, much evidences suggests that calcification arises from different active processes, involving both aortic valve-resident cells (valve endothelial cells, valve interstitial cells, mesenchymal stem cells, innate immunity cells) and circulating cells (circulating mesenchymal cells, immunity cells). Moreover, a role for the cell-derived “matrix vesicles” and extracellular matrix (ECM) components has also been recognized. The aim of this work is to review the cellular and molecular alterations occurring in aortic valve during CAVD pathogenesis, focusing on the role of ECM in the natural course of the disease.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 131
Author(s):  
Federica Boraldi ◽  
Francesco Demetrio Lofaro ◽  
Daniela Quaglino

Extraosseous calcification is a pathologic mineralization process occurring in soft connective tissues (e.g., skin, vessels, tendons, and cartilage). It can take place on a genetic basis or as a consequence of acquired chronic diseases. In this last case, the etiology is multifactorial, including both extra- and intracellular mechanisms, such as the formation of membrane vesicles (e.g., matrix vesicles and apoptotic bodies), mitochondrial alterations, and oxidative stress. This review is an overview of extraosseous calcification mechanisms focusing on the relationships between apoptosis and mineralization in cartilage and vascular tissues, as these are the two tissues mostly affected by a number of age-related diseases having a progressively increased impact in Western Countries.


Author(s):  
Genzheng Yi ◽  
Yue Ma ◽  
Yan Chen ◽  
Xueting Yang ◽  
Bo Yang ◽  
...  

2020 ◽  
Vol 21 (23) ◽  
pp. 9298
Author(s):  
Marco Antonio Lacerda-Abreu ◽  
Thais Russo-Abrahão ◽  
Jose Roberto Meyer-Fernandes

Inorganic phosphate (Pi) is an essential nutrient for the maintenance of cells. In healthy mammals, extracellular Pi is maintained within a narrow concentration range of 0.70 to 1.55 mM. Mammalian cells depend on Na+/Pi cotransporters for Pi absorption, which have been well studied. However, a new type of sodium-independent Pi transporter has been identified. This transporter assists in the absorption of Pi by intestinal cells and renal proximal tubule cells and in the reabsorption of Pi by osteoclasts and capillaries of the blood–brain barrier (BBB). Hyperphosphatemia is a risk factor for mineral deposition, the development of diseases such as osteoarthritis, and vascular calcifications (VCs). Na+-independent Pi transporters have been identified and biochemically characterized in vascular smooth muscle cells (VSMCs), chondrocytes, and matrix vesicles, and their involvement in mineral deposition in the extracellular microenvironment has been suggested. According to the growth rate hypothesis, cancer cells require more phosphate than healthy cells due to their rapid growth rates. Recently, it was demonstrated that breast cancer cells (MDA-MB-231) respond to high Pi concentration (2 mM) by decreasing Na+-dependent Pi transport activity concomitant with an increase in Na+-independent (H+-dependent) Pi transport. This Pi H+-dependent transport has a fundamental role in the proliferation and migratory capacity of MDA-MB-231 cells. The purpose of this review is to discuss experimental findings regarding Na+-independent inorganic phosphate transporters and summarize their roles in Pi homeostasis, cancers and other diseases, such as osteoarthritis, and in processes such as VC.


Sign in / Sign up

Export Citation Format

Share Document