nucleus mass
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 4)

H-INDEX

4
(FIVE YEARS 1)

2021 ◽  
Vol 162 (6) ◽  
pp. 268
Author(s):  
David Jewitt ◽  
Jing Li ◽  
Yoonyoung Kim

Abstract We describe active asteroid 331P/Gibbs (2012 F5) using archival Hubble Space Telescope (HST) data taken between 2015 and 2018. 331P is an outer main belt active asteroid with a long-lived debris trail that formed in 2011. Embedded in the debris trail we identify 19 fragments with radii between 0.04 and 0.11 km (albedo 0.05 assumed) containing about 1% of the mass of the primary nucleus. The largest shows a photometric range (∼1.5 mag), a V-shaped minimum, and a two-peaked lightcurve period near 9 hr, consistent with a symmetric contact binary. Less convincing explanations are that 331P-A is a monolithic, elongated splinter or that its surface shows hemispheric 4:1 albedo variations. The debris trail is composed of centimeter-sized and larger particles ejected with characteristic 10 cm s−1 speeds following a size distribution with index q = 3.7 ± 0.1 to 4.1 ± 0.2. The HST data show that earlier, ground-based measurements of the nucleus were contaminated by near-nucleus debris, which cleared by 2015. We find that the primary nucleus has effective radius 0.8 ± 0.1 km and is in rapid rotation (3.26 ± 0.01 hr), with a lightcurve range of 0.25 mag and a minimum density of 1600 kg m−3 if strengthless. The properties of 331P are consistent with (1) formation about 1.5 Myr ago by impact shattering of a precursor body, (2) spin-up by radiation torques to critical rotation, (3) ejection of about 1% of the nucleus mass in mid 2011 by rotational instability, and (4) subsequent evolution of the fragments and dispersal of the debris by radiation pressure.


2020 ◽  
Vol 128 (3) ◽  
pp. 309
Author(s):  
А.В. Малышев ◽  
Д.А. Глазов ◽  
И.А. Александров ◽  
И.И. Тупицын ◽  
В.М. Шабаев

The nuclear recoil effect on the $^2 P_{3/2}$-state $g$ factor of B-like ions is calculated to first order in the electron-to-nucleus mass ratio $m/M$ in the range $Z=18$--$92$. The calculations are performed by means of the $1/Z$ perturbation theory. Within the independent-electron approximation, the one- and two-electron recoil contributions are evaluated to all orders in the parameter $\alpha Z$ by employing a fully relativistic approach. The interelectronic-interaction correction of first order in $1/Z$ is treated within the Breit approximation. Higher orders in $1/Z$ are partially taken into account by incorporating the screening potential into the zeroth-order Hamiltonian. The most accurate to date theoretical predictions for the nuclear recoil contribution to the bound-electron $g$ factor are obtained.


2019 ◽  
Vol 630 ◽  
pp. A19 ◽  
Author(s):  
N. Biver ◽  
D. Bockelée-Morvan ◽  
M. Hofstadter ◽  
E. Lellouch ◽  
M. Choukroun ◽  
...  

We present the analysis of ≈100 molecular maps of the coma of comet 67P/Churyumov-Gerasimenko that were obtained with the MIRO submillimeter radiotelescope on board the Rosetta spacecraft. From the spectral line mapping of H216O, H218O, H217O, CH3OH, NH3, and CO and some fixed nadir pointings, we retrieved the outgassing pattern and total production rates for these species. The analysis covers the period from July 2014, inbound to perihelion, to June 2016, outbound, and heliocentric distances rh = 1.24–3.65 AU. A steep evolution of the outgassing rates with heliocentric distance is observed, typically in rh−16, with significant differences between molecules (e.g. steeper variation for H2O post-perihelion than for methanol). As a consequence, the abundances relative to water in the coma vary. The CH3OH and CO abundances increase after perihelion, while the NH3 abundance peaks around perihelion and then decreases. Outgassing patterns have been modeled as 2D Gaussian jets. The width of these jets is maximum around the equinoxes when the bulk of the outgassing is located near the equator. From July 2014 to February 2015, the outgassing is mostly restricted to a narrower jet (full width at half-maximum ≈80°) originating from high northern latitudes, while around perihelion, most of the gaseous production comes from the southernmost regions ( − 80 ± 5° cometocentric latitude) and forms a 100°–130° (full width at half-maximum) wide fan. We find a peak production of water of 0.8 × 1028 molec. s−1, 2.5 times lower than measured by the ROSINA experiment, and place an upper limit to a 50% additional production that could come from the sublimation of icy grains. We estimate the total loss of ices during this perihelion passage to be 4.18 ± 0.18 × 109 kg. We derive a dust-to-gas ratio in the lost material of 0.7–2.3 (including all sources of errors) based on the nucleus mass loss of 10.5 ± 3.4 × 109 kg estimated by the RSI experiment. We also obtain an estimate of the H218O/H217O ratio of 5.6 ± 0.8.


2018 ◽  
Vol 483 (2) ◽  
pp. 2337-2346 ◽  
Author(s):  
Martin Pätzold ◽  
Thomas P Andert ◽  
Matthias Hahn ◽  
Jean-Pierre Barriot ◽  
Sami W Asmar ◽  
...  
Keyword(s):  

2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
M. Amdouni ◽  
H. Eleuch

The effects of the relativistic corrections on the energy spectra are analyzed. Effective simulations based on manipulations of operators in the Sturmian basis are developed. Discrete and continuous energy spectra of a hydrogen atom with realistic nucleus mass in a strong magnetic field are computed. The transition from regularity to chaos in diamagnetic problem with the effect of the nucleus recoil energy is explored. Anticrossing of energy levels is observed for strong magnetic field.


2008 ◽  
Vol 677 (2) ◽  
pp. 895-905 ◽  
Author(s):  
Yasuyuki Watabe ◽  
Nozomu Kawakatu ◽  
Masatoshi Imanishi

2005 ◽  
Vol 13 ◽  
pp. 196-196
Author(s):  
Kenji Bekki ◽  
K. C. Freeman

AbstractWe present a self-consistent dynamical model in which ω Cen is formed from an ancient nucleated dwarf galaxy merging with the first generation of the Galactic thin disc in a retrograde manner with respect to the Galactic rotation. Our numerical simulations demonstrate that during merging between the Galaxy and the ω Cen’s host dwarf with MB ⋍ ‒14 mag and its nucleus mass of 107M⊙, the outer stellar envelope of the dwarf is nearly completely stripped whereas the central nucleus can survive from the tidal stripping because of its compactness. The developed naked nucleus is orbiting the young Galactic disc in a retrograde manner with its apocenter and pericenter distances of ~ 8 kpc and ~ 1 kpc, respectively, and thus have orbital properties similar to those of ω Cen. The Galactic tidal force can induce radial inflow of gas to the dwarf’s center and consequently triggers moderately strong nuclear starbursts in a repetitive manner. This result implies that efficient nuclear chemical enrichment resulting from the later starbursts can be closely associated with the origin of the observed relatively young and metal-rich stars in ω Cen. Dynamical heating by the ω Cen’s host can transform the young thin disc into the thick one during merging.


Sign in / Sign up

Export Citation Format

Share Document