tree ferns
Recently Published Documents


TOTAL DOCUMENTS

174
(FIVE YEARS 27)

H-INDEX

24
(FIVE YEARS 1)

2021 ◽  
Author(s):  
◽  
Thomas Dawes

<p><b>Epiphytes and other structurally-dependent plants have a spatial ecology and community structure intrinsically linked to that of the host trees in the forest, unlike fully terrestrial plants. Understanding of the ecological implications of this from a theoretical perspective is in its infancy. New Zealand’s south temperate rainforest, whilst not as species rich as tropical forests, hosts one of the richest temperate epiphyte floras. Our understanding of the ecological processes structuring the epiphyte communities of New Zealand forests is however lacking. Here, I present four key studies seeking to add to our knowledge of epiphyte community structure, host specificity and spatial ecology in the New Zealand eco-region.</b></p> <p>First, I tested if seed size determined the likelihood of woody plant species occurring epiphytically on tree ferns (their arboreality) – Chapter 2. Arboreality was negatively related to seed size, with only smaller-seeded species commonly occurring on tree ferns. However, the effect of seed size reduced in later life history stages, as expected. These small-seeded species, most notably Weinmannia racemosa, appear to be utilising an alternative recruitment strategy by establishing epiphytically on the tree fern trunks.</p> <p>Second, on Cyathea dealbata host tree ferns, I tested patterns of species accumulation, metacommunity network structure, and differences in vertical stratification (Chapter 3). Epiphytes and climbers followed a species accumulation model of succession between tree ferns of different sizes and between older and younger portions of the tree fern. The metacommunity network showed patterns of species co-occurrence and nestedness consistent with null expectations. Epiphytes of different habits and different dispersal syndromes show different vertical profiles of occurrence, with bird-dispersed species occurring more often near the top of the tree fern than other taxa.</p> <p>To understand an unusual pattern in epiphyte between-host structuring, I quantified the relationship between epiphytic plant and sooty mould assemblages in New Zealand montane beech forest (Chapter 4). Due to the presence of host specific scale insects, the sooty mould was limited to two of three co-dominant canopy tree species. On these two host species, epiphyte richness was significantly reduced. The host size-richness relationship in these two species was also removed, with species composition significantly altered compared to the mould free host species. My results are consistent with the sooty mould amensally excluding the epiphytes and it can be considered as a part of a keystone species complex (with the host beeches and scale insects). This produces a strong pattern of parallel host specificity otherwise not seen in epiphyte assemblages.</p> <p>Lastly, I compared the differences in spatial niche and host species diversity between three arboreal plants, with divergent ecophysiology, on Lord Howe Island (Chapter 5). These focal species were a dwarf mistletoe, an epiphytic orchid and an epiphytic fern. The mistletoe was restricted to thinner branches, and had a significantly different niche to both epiphyte taxa. The host diversity of the mistletoe and orchid both differed significantly from null model expectations. However, the epiphytic fern (Platycerium bifurcatum) had a host diversity consistent with null expectations.</p> <p>Taken together, these studies increase our understanding of epiphyte community assembly in New Zealand and provide a platform to encourage further work in this field. They also provide results that expand understanding of spatial patterns between host and up vertical clines.</p>


Biotropica ◽  
2021 ◽  
Author(s):  
Giesta Maria Olmedo Machado ◽  
Guilherme Salgado Grittz ◽  
André Luís Gasper

2021 ◽  
Author(s):  
◽  
Thomas Dawes

<p><b>Epiphytes and other structurally-dependent plants have a spatial ecology and community structure intrinsically linked to that of the host trees in the forest, unlike fully terrestrial plants. Understanding of the ecological implications of this from a theoretical perspective is in its infancy. New Zealand’s south temperate rainforest, whilst not as species rich as tropical forests, hosts one of the richest temperate epiphyte floras. Our understanding of the ecological processes structuring the epiphyte communities of New Zealand forests is however lacking. Here, I present four key studies seeking to add to our knowledge of epiphyte community structure, host specificity and spatial ecology in the New Zealand eco-region.</b></p> <p>First, I tested if seed size determined the likelihood of woody plant species occurring epiphytically on tree ferns (their arboreality) – Chapter 2. Arboreality was negatively related to seed size, with only smaller-seeded species commonly occurring on tree ferns. However, the effect of seed size reduced in later life history stages, as expected. These small-seeded species, most notably Weinmannia racemosa, appear to be utilising an alternative recruitment strategy by establishing epiphytically on the tree fern trunks.</p> <p>Second, on Cyathea dealbata host tree ferns, I tested patterns of species accumulation, metacommunity network structure, and differences in vertical stratification (Chapter 3). Epiphytes and climbers followed a species accumulation model of succession between tree ferns of different sizes and between older and younger portions of the tree fern. The metacommunity network showed patterns of species co-occurrence and nestedness consistent with null expectations. Epiphytes of different habits and different dispersal syndromes show different vertical profiles of occurrence, with bird-dispersed species occurring more often near the top of the tree fern than other taxa.</p> <p>To understand an unusual pattern in epiphyte between-host structuring, I quantified the relationship between epiphytic plant and sooty mould assemblages in New Zealand montane beech forest (Chapter 4). Due to the presence of host specific scale insects, the sooty mould was limited to two of three co-dominant canopy tree species. On these two host species, epiphyte richness was significantly reduced. The host size-richness relationship in these two species was also removed, with species composition significantly altered compared to the mould free host species. My results are consistent with the sooty mould amensally excluding the epiphytes and it can be considered as a part of a keystone species complex (with the host beeches and scale insects). This produces a strong pattern of parallel host specificity otherwise not seen in epiphyte assemblages.</p> <p>Lastly, I compared the differences in spatial niche and host species diversity between three arboreal plants, with divergent ecophysiology, on Lord Howe Island (Chapter 5). These focal species were a dwarf mistletoe, an epiphytic orchid and an epiphytic fern. The mistletoe was restricted to thinner branches, and had a significantly different niche to both epiphyte taxa. The host diversity of the mistletoe and orchid both differed significantly from null model expectations. However, the epiphytic fern (Platycerium bifurcatum) had a host diversity consistent with null expectations.</p> <p>Taken together, these studies increase our understanding of epiphyte community assembly in New Zealand and provide a platform to encourage further work in this field. They also provide results that expand understanding of spatial patterns between host and up vertical clines.</p>


2021 ◽  
Vol 111 (4) ◽  
Author(s):  
Marcus Lehnert ◽  
Adrian Tejedor ◽  
Wilson D. Rodríguez Duque ◽  
Luis Fernando Giraldo Gallego
Keyword(s):  

2021 ◽  
Vol 9 ◽  
Author(s):  
Andy R. Griffiths ◽  
Miles R. Silman ◽  
William Farfan-Rios ◽  
Kenneth J. Feeley ◽  
Karina García Cabrera ◽  
...  

Elevation gradients present enigmatic diversity patterns, with trends often dependent on the dimension of diversity considered. However, focus is often on patterns of taxonomic diversity and interactions between diversity gradients and evolutionary factors, such as lineage age, are poorly understood. We combine forest census data with a genus level phylogeny representing tree ferns, gymnosperms, angiosperms, and an evolutionary depth of 382 million years, to investigate taxonomic and evolutionary diversity patterns across a long tropical montane forest elevation gradient on the Amazonian flank of the Peruvian Andes. We find that evolutionary diversity peaks at mid-elevations and contrasts with taxonomic richness, which is invariant from low to mid-elevation, but then decreases with elevation. We suggest that this trend interacts with variation in the evolutionary ages of lineages across elevation, with contrasting distribution trends between younger and older lineages. For example, while 53% of young lineages (originated by 10 million years ago) occur only below ∼1,750 m asl, just 13% of old lineages (originated by 110 million years ago) are restricted to below ∼1,750 m asl. Overall our results support an Environmental Crossroads hypothesis, whereby a mid-gradient mingling of distinct floras creates an evolutionary diversity in mid-elevation Andean forests that rivals that of the Amazonian lowlands.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4704
Author(s):  
Yu Song ◽  
Kai Zhu ◽  
Yinbo Xu ◽  
Qingtao Meng ◽  
Zhaojun Liu ◽  
...  

In some cases, the oil shale deposited in shallow lakes may be genetically associated with the coal-bearing successions. Although paleovegetation is an important controlling factor for the formation of oil shale- and coal-bearing successions, few studies have focused on their joint characterization. In this study, a total of twenty-one oil shale and coal samples were collected from the upper member of the Lower Cretaceous Muling Formation (K1ml2) in the Laoheishan Basin, and investigated for their bulk geochemical, maceral, palynological, and terpenoid biomarker characteristics, in order to reconstruct the paleovegetation and reveal its influence on the formation of oil shale and coal. The K1ml2 is subdivided into lower, middle, and upper units. The studied oil shale samples from the lower and upper units display a high ash yield (Ad), low total organic carbon (TOC) and sulfur (S) contents, and limited hydrocarbon generation potential. The studied coal samples from the middle unit are characterized by low Ad, and high TOC and low S values, and show significant hydrocarbon generation potential. The paleovegetation during the formation of the lower unit was dominated by mire vegetation, such as shrubs (e.g., Lygodiaceae, Schizaeaceae), tree ferns (e.g., Dicksoniaceae/Cyatheaceae), and coniferous trees (e.g., Podocarpaceae). In the middle unit interval, the paleovegetation was represented by highland vegetation (Pinaceae and Araucariaceae) and peat-forming coniferous plants (e.g., Podocarpaceae, Cupressaceae/Taxodiaceae). Various vegetation, such as herbs (e.g., Osmundaceae), shrubs (e.g., Schizaeaceae), and coniferous trees (e.g., Podocarpaceae) was prosperous during the upper unit interval. Coniferous trees could provide abundant hydrogen-rich materials (e.g., resins) to the mire/lake, which may elevate the hydrogen content in peat/lake sediments, and finally result in higher hydrocarbon generation potential in the coal than in the oil shale. Therefore, the influence of paleovegetation on the formation of oil shale and coal should be fully considered when studying oil shale- and coal-bearing successions. The results also provide guidance for further exploration studies on oil shale and coal in northeast China.


Author(s):  
André Luís de Gasper ◽  
Guilherme Salgado Grittz ◽  
Carlos Henrique Russi ◽  
Carlos Eduardo Schwartz ◽  
Arthur Vinicius Rodrigues

2021 ◽  
Author(s):  
Eileen Kröber ◽  
Sonja Wende ◽  
Saranya Kanukollu ◽  
Caroline Buchen-Tschiskale ◽  
Ludovic Besaury ◽  
...  

Abstract Background: Chloromethane (CH3Cl) is the most abundant chlorinated volatile organic compound in the atmosphere and contributes to stratospheric ozone depletion. CH3Cl has mainly natural sources such as emissions from vegetation. In particular, ferns have been recognized as strong emitters. Mitigation of CH3Cl to the atmosphere by methylotrophic bacteria, a global sink for this compound, is likely underestimated and remains poorly characterized. Results and Conclusions: We investigated chloromethane-degrading taxa associated with intact and living tree fern plants of the species Cyathea australis by stable isotope probing (SIP) with 13C-labelled CH3Cl combined with metagenomic DNA sequencing. Metagenome assembled genomes (MAGs) related to Methylobacterium and Friedmanniella were identified as being involved in the degradation of CH3Cl in the phyllosphere, i.e., the aerial parts of the tree fern, while a MAG related to Sorangium was linked to CH3Cl degradation in the fern rhizosphere. The only known metabolic pathway for CH3Cl degradation, via a methyltransferase system including the gene cmuA, was not detected in metagenomes or MAGs identified by SIP. Hence, a yet uncharacterised methylotrophic cmuA-independent pathway likely drives CH3Cl degradation in the investigated tree ferns.


Phytotaxa ◽  
2021 ◽  
Vol 484 (1) ◽  
pp. 144-144
Author(s):  
ADRIAN TEJEDOR ◽  
GLORIA CALATAYUD

Domin, C. (1930) The species of the genus Cyathea J.Sm. Acta Botanica Bohemica 9: 85–174.Hooker, W.J. & Baker, J.G. (1874) Synopsis Filicum, ed. 2. R. Hardwicke, London.         https://doi.org/10.5962/bhl.title.41433Tejedor, A. & Calatayud, G. (2018) Six new scaly tree ferns (Cyathea: Cyatheaceae) from Northern Peru. American Fern Journal 108(4): 117–138.         https://doi.org/10.1640/0002-8444-108.4.117Weigend, M. (2002) Observations on the biogeography of the Amotape-Huancabamba Zone in northern Peru. The Botanical Review 68: 38–54.                https://doi.org/10.1663/0006-8101(2002)068[0038:OOTBOT]2.0.CO;2


Sign in / Sign up

Export Citation Format

Share Document