epiphyte community
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 12)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
Author(s):  
◽  
Thomas Dawes

<p><b>Epiphytes and other structurally-dependent plants have a spatial ecology and community structure intrinsically linked to that of the host trees in the forest, unlike fully terrestrial plants. Understanding of the ecological implications of this from a theoretical perspective is in its infancy. New Zealand’s south temperate rainforest, whilst not as species rich as tropical forests, hosts one of the richest temperate epiphyte floras. Our understanding of the ecological processes structuring the epiphyte communities of New Zealand forests is however lacking. Here, I present four key studies seeking to add to our knowledge of epiphyte community structure, host specificity and spatial ecology in the New Zealand eco-region.</b></p> <p>First, I tested if seed size determined the likelihood of woody plant species occurring epiphytically on tree ferns (their arboreality) – Chapter 2. Arboreality was negatively related to seed size, with only smaller-seeded species commonly occurring on tree ferns. However, the effect of seed size reduced in later life history stages, as expected. These small-seeded species, most notably Weinmannia racemosa, appear to be utilising an alternative recruitment strategy by establishing epiphytically on the tree fern trunks.</p> <p>Second, on Cyathea dealbata host tree ferns, I tested patterns of species accumulation, metacommunity network structure, and differences in vertical stratification (Chapter 3). Epiphytes and climbers followed a species accumulation model of succession between tree ferns of different sizes and between older and younger portions of the tree fern. The metacommunity network showed patterns of species co-occurrence and nestedness consistent with null expectations. Epiphytes of different habits and different dispersal syndromes show different vertical profiles of occurrence, with bird-dispersed species occurring more often near the top of the tree fern than other taxa.</p> <p>To understand an unusual pattern in epiphyte between-host structuring, I quantified the relationship between epiphytic plant and sooty mould assemblages in New Zealand montane beech forest (Chapter 4). Due to the presence of host specific scale insects, the sooty mould was limited to two of three co-dominant canopy tree species. On these two host species, epiphyte richness was significantly reduced. The host size-richness relationship in these two species was also removed, with species composition significantly altered compared to the mould free host species. My results are consistent with the sooty mould amensally excluding the epiphytes and it can be considered as a part of a keystone species complex (with the host beeches and scale insects). This produces a strong pattern of parallel host specificity otherwise not seen in epiphyte assemblages.</p> <p>Lastly, I compared the differences in spatial niche and host species diversity between three arboreal plants, with divergent ecophysiology, on Lord Howe Island (Chapter 5). These focal species were a dwarf mistletoe, an epiphytic orchid and an epiphytic fern. The mistletoe was restricted to thinner branches, and had a significantly different niche to both epiphyte taxa. The host diversity of the mistletoe and orchid both differed significantly from null model expectations. However, the epiphytic fern (Platycerium bifurcatum) had a host diversity consistent with null expectations.</p> <p>Taken together, these studies increase our understanding of epiphyte community assembly in New Zealand and provide a platform to encourage further work in this field. They also provide results that expand understanding of spatial patterns between host and up vertical clines.</p>


2021 ◽  
Author(s):  
◽  
Thomas Dawes

<p><b>Epiphytes and other structurally-dependent plants have a spatial ecology and community structure intrinsically linked to that of the host trees in the forest, unlike fully terrestrial plants. Understanding of the ecological implications of this from a theoretical perspective is in its infancy. New Zealand’s south temperate rainforest, whilst not as species rich as tropical forests, hosts one of the richest temperate epiphyte floras. Our understanding of the ecological processes structuring the epiphyte communities of New Zealand forests is however lacking. Here, I present four key studies seeking to add to our knowledge of epiphyte community structure, host specificity and spatial ecology in the New Zealand eco-region.</b></p> <p>First, I tested if seed size determined the likelihood of woody plant species occurring epiphytically on tree ferns (their arboreality) – Chapter 2. Arboreality was negatively related to seed size, with only smaller-seeded species commonly occurring on tree ferns. However, the effect of seed size reduced in later life history stages, as expected. These small-seeded species, most notably Weinmannia racemosa, appear to be utilising an alternative recruitment strategy by establishing epiphytically on the tree fern trunks.</p> <p>Second, on Cyathea dealbata host tree ferns, I tested patterns of species accumulation, metacommunity network structure, and differences in vertical stratification (Chapter 3). Epiphytes and climbers followed a species accumulation model of succession between tree ferns of different sizes and between older and younger portions of the tree fern. The metacommunity network showed patterns of species co-occurrence and nestedness consistent with null expectations. Epiphytes of different habits and different dispersal syndromes show different vertical profiles of occurrence, with bird-dispersed species occurring more often near the top of the tree fern than other taxa.</p> <p>To understand an unusual pattern in epiphyte between-host structuring, I quantified the relationship between epiphytic plant and sooty mould assemblages in New Zealand montane beech forest (Chapter 4). Due to the presence of host specific scale insects, the sooty mould was limited to two of three co-dominant canopy tree species. On these two host species, epiphyte richness was significantly reduced. The host size-richness relationship in these two species was also removed, with species composition significantly altered compared to the mould free host species. My results are consistent with the sooty mould amensally excluding the epiphytes and it can be considered as a part of a keystone species complex (with the host beeches and scale insects). This produces a strong pattern of parallel host specificity otherwise not seen in epiphyte assemblages.</p> <p>Lastly, I compared the differences in spatial niche and host species diversity between three arboreal plants, with divergent ecophysiology, on Lord Howe Island (Chapter 5). These focal species were a dwarf mistletoe, an epiphytic orchid and an epiphytic fern. The mistletoe was restricted to thinner branches, and had a significantly different niche to both epiphyte taxa. The host diversity of the mistletoe and orchid both differed significantly from null model expectations. However, the epiphytic fern (Platycerium bifurcatum) had a host diversity consistent with null expectations.</p> <p>Taken together, these studies increase our understanding of epiphyte community assembly in New Zealand and provide a platform to encourage further work in this field. They also provide results that expand understanding of spatial patterns between host and up vertical clines.</p>


Author(s):  
Jonas Morales‐Linares ◽  
Alejandro Flores‐Palacios ◽  
Angélica María Corona‐López ◽  
Víctor Hugo Toledo‐Hernández

2021 ◽  
Vol 53 (1) ◽  
pp. 135-148
Author(s):  
Christopher J. Ellis ◽  
Sally Eaton

AbstractThere is growing evidence that species and communities are responding to, and will continue to be affected by, climate change. For species at risk, vulnerability can be reduced by ensuring that their habitat is extensive, connected and provides opportunities for dispersal and/or gene flow, facilitating a biological response through migration or adaptation. For woodland epiphytes, vulnerability might also be reduced by ensuring sufficient habitat heterogeneity, so that microhabitats provide suitable local microclimates, even as the larger scale climate continues to change (i.e. microrefugia). This study used fuzzy set ordination to compare bryophyte and lichen epiphyte community composition to a large-scale gradient from an oceanic to a relatively more continental macroclimate. The residuals from this relationship identified microhabitats in which species composition reflected a climate that was more oceanic or more continental than would be expected given the prevailing macroclimate. Comparing these residuals to features that operate at different scales to create the microclimate (landscape, stand and tree-scale), it was possible to identify how one might engineer microrefugia into existing or new woodland, in order to reduce epiphyte vulnerability to climate change. Multimodel inference was used to identify the most important features for consideration, which included local effects such as height on the bole, angle of bole lean and bark water holding capacity, as well as tree species and tree age, and within the landscape, topographic wetness and physical exposure.


2020 ◽  
Vol 77 (3) ◽  
pp. 519-541
Author(s):  
V. Brosnan ◽  
C. J. Ellis

National vegetation classification (NVC) has been widely applied as a framework for mapping and conserving plant species and community types. However, a limited availability of expertise has prevented NVCs from being developed and used in cryptogam-dominated systems, such as for temperate and boreal epiphyte communities. This study simplified a recent systematically sampled NVC, trialled for epiphyte communities in Scotland, by reducing the original list of 82 community indicators to 34 easily recognisable species (lichens, mosses and liverworts). These were subsequently sampled from woodland sites positioned in Scotland’s temperate rain forest zone. Sites were positioned among localities in less intensively managed landscapes (northwest Scotland) through to peri-urban environments (southern Scotland), grouping sites for each locality based on a contrast in woodland temporal continuity (ancient or recent). The richness and diversity of epiphyte community indicators were compared with easily measured variables reflecting stand heterogeneity or ecological stability, and woodland temporal continuity, with air pollution as a covariable. Richness and diversity were significantly explained by the ecological stability of woodland stands, heterogeneity of the light environment, and nitrogen pollution. This demonstrates a tool that can be deployed by the non-specialist, with appropriate training, to quantify the condition of a woodland stand through consequences for its epiphytes in globally important temperate rain forest. The pattern of richness and diversity was consistent with the co-occurrence of particular indicator species, which represent the range of epiphyte community types supported by a woodland.


2020 ◽  
Vol 21 (1) ◽  
pp. 70
Author(s):  
SILVIA MECCA ◽  
EDOARDO CASOLI ◽  
GIANDOMENICO ARDIZZONE ◽  
MARIA CRISTINA GAMBI

Morphological features of the seagrass Posidonia oceanica (L.) Delile and its epiphyte community were studied in three acidified stations located in two CO2 vents systems and one control station under normal pH conditions off the island of Ischia (Italy) to highlight the possible effects of ocean acidification. Plant phenology was analyzed every two months for a year cycle (June 2016–April 2017), while epiphytes were studied in the period of highest development of both the leaf canopy and the epiphytic community (June, August, and October 2016). The shoot density of Posidonia beds in the acidified stations of the studied sites was significantly higher than that in the control area. Significant differences in the mean leaf length according to the pH condition, month, and the interaction of these two factors were observed (PERMANOVA); the mean leaf width differed also among pH conditions and months. We recorded lower leaf lengths and widths in the acidified stations in all the considered months, compared to those in the control station. These differences are consistent with the higher impact of grazing by the herbivorous fish Sarpa salpa observed on the leaves in the acidified stations. However, the overall leaf surface available for epiphytes was similar among stations because of the higher shoot density under ocean acidification conditions. Overall, the composition and structure of the epiphytic community on the Posidonia leaves showed significant differences in relation to acidification: in both acidified sites, all the calcareous forms, both encrusting red algae (Corallinales) and animals (bryozoans, foraminiferans, and spirorbids), disappeared or were strongly reduced, in favor of encrusting or erect fleshy algae, and non-calcifying invertebrates (hydrozoans, tunicates) which dominated the assemblage. Coralline algae are early species in the epiphytic colonization of P. oceanica and therefore their absence can further modify the pattern of leaf colonization by other species. Therefore, the changes found in the epiphyte community in low pH areas could have potential cascading effects on the seagrass trophic network and the functioning of the system.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e8244 ◽  
Author(s):  
Alexander C. Bippus ◽  
Ignacio H. Escapa ◽  
Peter Wilf ◽  
Alexandru M.F. Tomescu

Background In extant ecosystems, complex networks of ecological interactions between organisms can be readily studied. In contrast, understanding of such interactions in ecosystems of the geologic past is incomplete. Specifically, in past terrestrial ecosystems we know comparatively little about plant biotic interactions besides saprotrophy, herbivory, mycorrhizal associations, and oviposition. Due to taphonomic biases, epiphyte communities are particularly rare in the plant-fossil record, despite their prominence in modern ecosystems. Accordingly, little is known about how terrestrial epiphyte communities have changed across geologic time. Here, we describe a tiny in situ fossil epiphyte community that sheds light on plant-animal and plant-plant interactions more than 50 million years ago. Methods A single silicified Todea (Osmundaceae) rhizome from a new locality of the early Eocene (ca. 52 Ma) Tufolitas Laguna del Hunco (Patagonia, Argentina) was studied in serial thin sections using light microscopy. The community of organisms colonizing the tissues of the rhizome was characterized by identifying the organisms and mapping and quantifying their distribution. A 200 × 200 µm grid was superimposed onto the rhizome cross section, and the colonizers present at each node of the grid were tallied. Results Preserved in situ, this community offers a rare window onto aspects of ancient ecosystems usually lost to time and taphonomic processes. The community is surprisingly diverse and includes the first fossilized leafy liverworts in South America, also marking the only fossil record of leafy bryophyte epiphytes outside of amber deposits; as well as several types of fungal hyphae and spores; microsclerotia with possible affinities in several ascomycete families; and evidence for oribatid mites. Discussion The community associated with the Patagonian rhizome enriches our understanding of terrestrial epiphyte communities in the distant past and adds to a growing body of literature on osmundaceous rhizomes as important hosts for component communities in ancient ecosystems, just as they are today. Because osmundaceous rhizomes represent an ecological niche that has remained virtually unchanged over time and space and are abundant in the fossil record, they provide a paleoecological model system that could be used to explore epiphyte community structure through time.


Sign in / Sign up

Export Citation Format

Share Document