sooty mould
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 13)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
Author(s):  
◽  
Thomas Dawes

<p><b>Epiphytes and other structurally-dependent plants have a spatial ecology and community structure intrinsically linked to that of the host trees in the forest, unlike fully terrestrial plants. Understanding of the ecological implications of this from a theoretical perspective is in its infancy. New Zealand’s south temperate rainforest, whilst not as species rich as tropical forests, hosts one of the richest temperate epiphyte floras. Our understanding of the ecological processes structuring the epiphyte communities of New Zealand forests is however lacking. Here, I present four key studies seeking to add to our knowledge of epiphyte community structure, host specificity and spatial ecology in the New Zealand eco-region.</b></p> <p>First, I tested if seed size determined the likelihood of woody plant species occurring epiphytically on tree ferns (their arboreality) – Chapter 2. Arboreality was negatively related to seed size, with only smaller-seeded species commonly occurring on tree ferns. However, the effect of seed size reduced in later life history stages, as expected. These small-seeded species, most notably Weinmannia racemosa, appear to be utilising an alternative recruitment strategy by establishing epiphytically on the tree fern trunks.</p> <p>Second, on Cyathea dealbata host tree ferns, I tested patterns of species accumulation, metacommunity network structure, and differences in vertical stratification (Chapter 3). Epiphytes and climbers followed a species accumulation model of succession between tree ferns of different sizes and between older and younger portions of the tree fern. The metacommunity network showed patterns of species co-occurrence and nestedness consistent with null expectations. Epiphytes of different habits and different dispersal syndromes show different vertical profiles of occurrence, with bird-dispersed species occurring more often near the top of the tree fern than other taxa.</p> <p>To understand an unusual pattern in epiphyte between-host structuring, I quantified the relationship between epiphytic plant and sooty mould assemblages in New Zealand montane beech forest (Chapter 4). Due to the presence of host specific scale insects, the sooty mould was limited to two of three co-dominant canopy tree species. On these two host species, epiphyte richness was significantly reduced. The host size-richness relationship in these two species was also removed, with species composition significantly altered compared to the mould free host species. My results are consistent with the sooty mould amensally excluding the epiphytes and it can be considered as a part of a keystone species complex (with the host beeches and scale insects). This produces a strong pattern of parallel host specificity otherwise not seen in epiphyte assemblages.</p> <p>Lastly, I compared the differences in spatial niche and host species diversity between three arboreal plants, with divergent ecophysiology, on Lord Howe Island (Chapter 5). These focal species were a dwarf mistletoe, an epiphytic orchid and an epiphytic fern. The mistletoe was restricted to thinner branches, and had a significantly different niche to both epiphyte taxa. The host diversity of the mistletoe and orchid both differed significantly from null model expectations. However, the epiphytic fern (Platycerium bifurcatum) had a host diversity consistent with null expectations.</p> <p>Taken together, these studies increase our understanding of epiphyte community assembly in New Zealand and provide a platform to encourage further work in this field. They also provide results that expand understanding of spatial patterns between host and up vertical clines.</p>


2021 ◽  
Author(s):  
◽  
Thomas Dawes

<p><b>Epiphytes and other structurally-dependent plants have a spatial ecology and community structure intrinsically linked to that of the host trees in the forest, unlike fully terrestrial plants. Understanding of the ecological implications of this from a theoretical perspective is in its infancy. New Zealand’s south temperate rainforest, whilst not as species rich as tropical forests, hosts one of the richest temperate epiphyte floras. Our understanding of the ecological processes structuring the epiphyte communities of New Zealand forests is however lacking. Here, I present four key studies seeking to add to our knowledge of epiphyte community structure, host specificity and spatial ecology in the New Zealand eco-region.</b></p> <p>First, I tested if seed size determined the likelihood of woody plant species occurring epiphytically on tree ferns (their arboreality) – Chapter 2. Arboreality was negatively related to seed size, with only smaller-seeded species commonly occurring on tree ferns. However, the effect of seed size reduced in later life history stages, as expected. These small-seeded species, most notably Weinmannia racemosa, appear to be utilising an alternative recruitment strategy by establishing epiphytically on the tree fern trunks.</p> <p>Second, on Cyathea dealbata host tree ferns, I tested patterns of species accumulation, metacommunity network structure, and differences in vertical stratification (Chapter 3). Epiphytes and climbers followed a species accumulation model of succession between tree ferns of different sizes and between older and younger portions of the tree fern. The metacommunity network showed patterns of species co-occurrence and nestedness consistent with null expectations. Epiphytes of different habits and different dispersal syndromes show different vertical profiles of occurrence, with bird-dispersed species occurring more often near the top of the tree fern than other taxa.</p> <p>To understand an unusual pattern in epiphyte between-host structuring, I quantified the relationship between epiphytic plant and sooty mould assemblages in New Zealand montane beech forest (Chapter 4). Due to the presence of host specific scale insects, the sooty mould was limited to two of three co-dominant canopy tree species. On these two host species, epiphyte richness was significantly reduced. The host size-richness relationship in these two species was also removed, with species composition significantly altered compared to the mould free host species. My results are consistent with the sooty mould amensally excluding the epiphytes and it can be considered as a part of a keystone species complex (with the host beeches and scale insects). This produces a strong pattern of parallel host specificity otherwise not seen in epiphyte assemblages.</p> <p>Lastly, I compared the differences in spatial niche and host species diversity between three arboreal plants, with divergent ecophysiology, on Lord Howe Island (Chapter 5). These focal species were a dwarf mistletoe, an epiphytic orchid and an epiphytic fern. The mistletoe was restricted to thinner branches, and had a significantly different niche to both epiphyte taxa. The host diversity of the mistletoe and orchid both differed significantly from null model expectations. However, the epiphytic fern (Platycerium bifurcatum) had a host diversity consistent with null expectations.</p> <p>Taken together, these studies increase our understanding of epiphyte community assembly in New Zealand and provide a platform to encourage further work in this field. They also provide results that expand understanding of spatial patterns between host and up vertical clines.</p>


Author(s):  
Fabienne Flessa ◽  
Janno Harjes ◽  
Marcela E. S. Cáceres ◽  
Gerhard Rambold

AbstractTo gain an insight into fungal sooty mould communities on leaves of trees and shrubs in the tropics and in temperate regions, 47 biofilms of the Mata Atlântica rainforest relic and the Caatinga vegetation in the state of Sergipe, Northeast Brazil, and from Central European colline and alpine zones were compared. The four sampling sites clearly differed in composition of their epiphyllous fungal communities. The fungal OTUs from all sites belonged mainly to the Ascomycota, with Dothideomycetes being the dominant class. The core community group consisted of a few site-specific representatives in co-occurrence with the ubiquitous Mycosphaerella tassiana and Aureobasidium pullulans. Most species of the core community were dark pigmented and were accompanied by facultative unpigmented or lightly pigmented species. Among the cultivable fungal species, the proportion of melanised species was significantly more abundant in samples from the two European sites, which supports the theory of thermal melanism. The identity of the host plant had a stronger impact on fungal community composition than the presence of sap-feeding insects.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Anshu Deep Khalkho ◽  
Akhila Nand Rai ◽  
Smriti Bhardwaj

A survey for the study of foliicolous fungal forms of Ambikapur, north Chhattisgarh was conducted in November 2018, and came across an interesting fungal form of sooty mould infecting living leaves of Bauhinia variegata L. which upon detailed mycotaxonomic treatment proved to be an undescribed species of Capnodium. Sooty mould diminish photosynthesis of host plant. Capnodiaceae is the most specialized family of sooty mould which includes 5 genera,149 species from the world and only 10 species described from India. Phenotypic observations, microscopic and Scanning Electron Microscopic investigation revealed the drastic differences with the earlier known allied taxa so much so to dispose it as a new taxon of species rank Capnodium variegatum sp.nov.


2021 ◽  
Author(s):  
Ru Nguyen

Abstract Feeding by A. woglumi damages new leaf growth, reducing nitrogen levels in infested leaves. Sooty mould growing on honeydew deposits blocks light and air from the leaves, reducing photosynthesis. This can reduce fruit set by up to 80% or more (Eberling, 1954). Crop losses of limes due to A. woglumi were recorded at 25% by Watts and Alam (1973). In Mexico, citrus blackfly is regarded as a threat to citrus crops and to other crops such as mangoes, pears or coffee grown adjacent to heavily infested citrus groves. A. woglumi is a constant menace to citrus and other crops in the USA and Venezuela. It has been recorded seriously affecting citrus in India (David and Subramaniam, 1976). Le Pelley (1968) mentions it as a severe pest of coffee in the New World.


2021 ◽  
Author(s):  
Marion Doy

Abstract The impact of sooty mould species may be of little importance economically as the fungi do not obtain food from the crop plant, and mycelial growth is easily removed, leaving the plant surface undamaged. However, sooty moulds affect the ability of the leaf to photosynthesise, thus can lead to early senescence and a reduction in fruit size and quality (Horst, 2008; Ben-Dov and Hodgson, 1997), especially a second crop from an affected tree (Haleem, 1984). Reduced yield due to infection of inflorescences and uneven ripening of fruits have also been recorded as problems associated with sooty mould coverage (Ben-Dov and Hodgson, 1997).


Insects ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 460
Author(s):  
Kyaw Min Tun ◽  
Andrea Clavijo McCormick ◽  
Trevor Jones ◽  
Stanislav Garbuz ◽  
Maria Minor

Infestation of willow plants by the giant willow aphid Tuberolachnus salignus (Hemiptera: Aphididae) is associated with copious deposition of sugar-rich honeydew under the plant canopy. We explored the effect of aphid honeydew on the soil biota and biochemical indicators in a two-year field trial. Soil samples from under aphid-infested and control willow trees, as well as samples from black sooty mould spots under the aphid-infested willows were compared; soil samples before aphid inoculation were used as a baseline. The honeydew deposition had a positive effect on the total soil carbon (C), but not on the total soil nitrogen content or soil pH. Microbial biomass C, basal respiration, number of yeast colony forming units, and the geometric mean of activities for six enzymes were significantly higher in honeydew-affected soils than in the control treatment on both years. The honeydew deposition also increased soil meso-fauna abundance, especially in the black sooty mould spots. The soil biochemical properties, which differed before and after aphid infestation, showed considerable overlap between the first and second year post-infestation. The results highlight the cascading effects of T. salignus on soil biological activity and the importance of using a multitrophic approach to explore similar scenarios.


Sign in / Sign up

Export Citation Format

Share Document