cathode strip
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 6)

H-INDEX

7
(FIVE YEARS 1)

2020 ◽  
Vol 84 (10) ◽  
pp. 1280-1285
Author(s):  
G. E. Gavrilov ◽  
M. E. Buzoverya ◽  
A. A. Dzyuba ◽  
I. A. Karpov

2020 ◽  
Vol 15 (03) ◽  
pp. C03047-C03047
Author(s):  
N. Manganelli
Keyword(s):  

2019 ◽  
Vol 204 ◽  
pp. 07009 ◽  
Author(s):  
A. Galavanov ◽  
M. Kapishin ◽  
K. Kapusniak ◽  
V. Karjavine ◽  
S. Khabarov ◽  
...  

BM@N (Baryonic Matter at the Nuclotron) is a fixed target experiment aimed to study nuclear matter in the relativistic heavy-ion collisions at the Nuclotron accelerator in JINR. The BM@N tracking system is based on Gas Electron Multipliers (GEM) detectors mounted inside the BM@N analyzing magnet. The Cathode Strip Chamber (CSC) is installed outside the magnet. The CSC is used for improvement of particles momentum identification. The structure of the GEM detectors and the CSC prototype and the results of study of their characteristics are presented. The GEM detectors and CSC are integrated into the BM@N experimental setup and data acquisition system. The results of first tests of the GEM tracking system and CSC in last runs are shortly reviewed.


2019 ◽  
Vol 214 ◽  
pp. 02014
Author(s):  
Mirena Paneva

The design of the CMS detector is optimized for muon measurements. The muon system consists of gas ionization detector technologies. Cathode Strip Chambers (CSC) with both tracking and triggering capabilities are installed in the forward region. The first stage of muon reconstruction uses information from individual muon chambers and is thus called local reconstruction, in contrast to a subsequent global reconstruction where the information from all detectors is combined. First, 2-dimensional spatial points (rechits) describing where a muon crosses the CSC layers are built from the electrical signals induced by the charged particle traversing the chamber. Next, from the reconstructed hits, straight-line track segments are built within each chamber. Local reconstruction becomes particularly challenging at high instantaneous luminosities, which are expected at the HL-LHC. The high rate of particles traversing the detectors leads to increased rate of spurious rechits and segments thus increasing the combinatorial backgrounds. In this respect, work on improving the current and developing new algorithms is essential and is in progress. This document presents the existing local reconstruction algorithms used in the CMS cathode strip chambers. Their performance as well as ongoing efforts towards HL-LHC improvements are discussed.


Sign in / Sign up

Export Citation Format

Share Document