periodic cell model
Recently Published Documents


TOTAL DOCUMENTS

3
(FIVE YEARS 2)

H-INDEX

1
(FIVE YEARS 0)

2021 ◽  
Vol 257 ◽  
pp. 117848
Author(s):  
R.F. Mardanov ◽  
S.K. Zaripov ◽  
V.F. Sharafutdinov

2021 ◽  
Vol 250 ◽  
pp. 02026
Author(s):  
Kohei Tateyama ◽  
Keiko Watanabe

It is known that the microstructure of cellular materials has a significant impact on their compressive properties. To study these phenomena, a hierarchical Poisson disk sampling algorithm and Voronoi partitioning were used to create a 3D numerical analysis model of cellular materials. In this study, we prepared random, periodic, and ellipsoidal cell models to investigate the effects of cell shape randomness and oblateness. Numerical experiments were performed using the finite element method solver RADIOSS. In the numerical analysis, an object collided with the cellular materials at a velocity of 25 m/s. The results showed that the flow stress of the random cell model was higher than that of the periodic cell model. Further, it was found that the aspect ratio of the cell shape has a significant impact on the mechanical properties of cellular materials.


Sign in / Sign up

Export Citation Format

Share Document