mechanical bond
Recently Published Documents


TOTAL DOCUMENTS

107
(FIVE YEARS 39)

H-INDEX

20
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Stephen Goldup ◽  
John Maynard ◽  
Peter Gallagher ◽  
David Lozano ◽  
Patrick Butler

Abstract The term chiral was introduced by Lord Kelvin over a century ago to describe objects that are distinct from their own mirror image. Chirality is relevant in many scientific areas, but particularly chemistry because different mirror image forms of a molecule famously have different biological properties. Chirality typically arises in molecules due to a rigidly chiral arrangement of covalently bonded atoms. Less generally appreciated is that molecular chirality can arise when molecules are threaded through one another to create a mechanical bond. For example, when two molecular rings with chemically distinct faces are joined like links in a chain the resulting structure is chiral even when the rings themselves are not. We re-examined the symmetry properties of such mechanically axially chiral catenanes and in doing so identified a straightforward route to these molecules from simple building blocks. This also led to the discovery of a previously overlooked mechanical stereogenic unit that can arise when such a ring encircles a dumbbell-shaped axle to generate a rotaxane. These insights allowed us to produce the first highly enantioenriched axially chiral catenane and the same approach gave access to a molecule containing the newly identified noncanonical axially chiral rotaxane motif. With methods to access these structures in hand, the process of exploring their properties and applications can now begin.


2021 ◽  
Author(s):  
John Maynard ◽  
Bartomeu Galmés ◽  
Athanasios Stergiou ◽  
Mark Symes ◽  
Antonio Frontera ◽  
...  

We report a series of rotaxane-based anion-π catalysts in which the mechanical bond between a bipyridine macrocycle and an axle containing an NDI unit is intrinsic to the activity observed, including a [3]rotaxane that catalyses an otherwise disfavoured Michael addition in >60 fold selectivity over a competing decarboxylation pathway that dominates under Brønsted base conditions. The results are rationalized by detailed experimental investigations, electrochemical and computational analysis.


Synthesis ◽  
2021 ◽  
Author(s):  
Jan van Maarseveen ◽  
Milo Dinu Cornelissen ◽  
Simone Pilon

Mechanically interlocked molecules (MiMs) such as catenanes and rotaxanes exhibit unique properties due to the mechanical bond which unites their components. The translational and rotational freedom present in these compounds may be harnessed to create stimuli-responsive MiMs, which find potential application as artificial molecular machines. Mechanically interlocked structures such as lasso peptides have also been found in nature, making MiMs promising albeit elusive targets for drug discovery. Although the first syntheses of MiMs were based on covalent strategies, approaches based on non-covalent interactions rose to prominence thereafter and have remained dominant. Non-covalent strategies are generally short and efficient, but do require particular structural motifs which are difficult to alter. In a covalent approach, MiMs can be more easily modified while the components may have increased rotational and translational freedom. Both approaches have complementary merits and combining the unmatched efficiency of non-covalent approaches with the scope of covalent syntheses may open up vast opportunities. In this review, recent covalently templated syntheses of MiMs are discussed to show their complementarity and anticipate future developments in this field.


Author(s):  
Pachaiyappan Rajamalli ◽  
Federica Rizzi ◽  
Wenbo Li ◽  
Michael Jinks ◽  
Abhishek Kumar Gupta ◽  
...  

2021 ◽  
Author(s):  
Pachaiyappan Rajamalli ◽  
Federica Rizzi ◽  
Wenbo Li ◽  
Michael Jinks ◽  
Abhishek Kumar Gupta ◽  
...  

2021 ◽  
Author(s):  
P Rajamalli ◽  
Federica Rizzi ◽  
Wenbo Li ◽  
Michael Jinks ◽  
Abhishek Gupta ◽  
...  

We report the characterization of rotaxanes based on a carbazole–benzophenone thermally activated delayed fluorescence luminophore. We find that the mechanical bond leads to an improvement in key photophysical properties of the emitter, notably an increase in photoluminescence quantum yield and a decrease in the energy difference between singlet and triplet states, as well as fine tuning of the emission wavelength, a feat that is difficult to achieve when using covalently bound substituents. Computational simulations, supported by X-ray crystallography, suggest that this tuning of properties occurs due to weak interactions between the axle and the macrocycle that are enforced by the mechanical bond. This work highlights the benefits of using the mechanical bond to refine existing luminophores, providing a new avenue for emitter optimization that can ultimately increase the performance of these molecules.


2021 ◽  
Author(s):  
P Rajamalli ◽  
Federica Rizzi ◽  
Wenbo Li ◽  
Michael Jinks ◽  
Abhishek Gupta ◽  
...  

We report the characterization of rotaxanes based on a carbazole–benzophenone thermally activated delayed fluorescence luminophore. We find that the mechanical bond leads to an improvement in key photophysical properties of the emitter, notably an increase in photoluminescence quantum yield and a decrease in the energy difference between singlet and triplet states, as well as fine tuning of the emission wavelength, a feat that is difficult to achieve when using covalently bound substituents. Computational simulations, supported by X-ray crystallography, suggest that this tuning of properties occurs due to weak interactions between the axle and the macrocycle that are enforced by the mechanical bond. This work highlights the benefits of using the mechanical bond to refine existing luminophores, providing a new avenue for emitter optimization that can ultimately increase the performance of these molecules.


2021 ◽  
Author(s):  
Javier Marti-Rujas ◽  
Stefano Elli ◽  
Alessandro Sacchetti ◽  
Franca Castiglione

Using mechanochemistry by grinding TPB and ZnBr2 an amorphous poly-[n]-catenane of interlocked M12L8 nanocages is obtained in good yields (⁓ 80 %) and within 15 minutes. The mechanical bond among...


Sign in / Sign up

Export Citation Format

Share Document