molecular rings
Recently Published Documents


TOTAL DOCUMENTS

84
(FIVE YEARS 12)

H-INDEX

20
(FIVE YEARS 0)

2022 ◽  
Author(s):  
Stephen Goldup ◽  
John Maynard ◽  
Peter Gallagher ◽  
David Lozano ◽  
Patrick Butler

Abstract The term chiral was introduced by Lord Kelvin over a century ago to describe objects that are distinct from their own mirror image. Chirality is relevant in many scientific areas, but particularly chemistry because different mirror image forms of a molecule famously have different biological properties. Chirality typically arises in molecules due to a rigidly chiral arrangement of covalently bonded atoms. Less generally appreciated is that molecular chirality can arise when molecules are threaded through one another to create a mechanical bond. For example, when two molecular rings with chemically distinct faces are joined like links in a chain the resulting structure is chiral even when the rings themselves are not. We re-examined the symmetry properties of such mechanically axially chiral catenanes and in doing so identified a straightforward route to these molecules from simple building blocks. This also led to the discovery of a previously overlooked mechanical stereogenic unit that can arise when such a ring encircles a dumbbell-shaped axle to generate a rotaxane. These insights allowed us to produce the first highly enantioenriched axially chiral catenane and the same approach gave access to a molecule containing the newly identified noncanonical axially chiral rotaxane motif. With methods to access these structures in hand, the process of exploring their properties and applications can now begin.



Author(s):  
Yi Zhang ◽  
Qiaohong Li ◽  
Wei-Hui Fang ◽  
Jian Zhang

The advantage of macrocyclic entities lies in their vital implications for host−guest chemistry. In this study, we demonstrated a noteworthy assembly of aluminum molecular rings for iodine capture. The one-pot...



2021 ◽  
Author(s):  
Ming-Hao Du ◽  
Su-Hui Xu ◽  
Guan-Jun Li ◽  
Han Xu ◽  
Yang Lin ◽  
...  


Author(s):  
Ming-Hao Du ◽  
Su-Hui Xu ◽  
Guan-Jun Li ◽  
Han Xu ◽  
Yang Lin ◽  
...  


2021 ◽  
Author(s):  
John Maynard ◽  
Peter Gallagher ◽  
David Lozano ◽  
Patrick Butler ◽  
Steve Goldup

Chirality, the property of objects that are distinct from their own mirror image, is important in many scientific areas but particularly chemistry, where the appearance of molecular chirality because of rigid arrangements of atoms in space famously influences a molecule’s biological properties. Less generally appreciated is that two molecular rings with chemically distinct faces combined like links in a chain results in a chiral structure even when the rings are achiral. To date, no enantiopure examples of such mechanically axially chiral catenanes has been reported. We re-examined the symmetry properties of the mechanically axially chiral motif and identified a straightforward route to such molecules from simple building blocks. We also identify that common representations of axially chiral catenanes obscure that a previously overlooked stereogenic unit arises when a ring is threaded onto a dumbbell-shaped molecule to generate a rotaxane. These insights allowed us to demonstrate the first stereoselective syntheses of an axially chiral catenane and a noncanonical axially chiral rotaxane motif. With methods to access these structures in hand, the process of exploring their properties and applications can now begin.



2021 ◽  
Author(s):  
John Maynard ◽  
Peter Gallagher ◽  
David Lozano ◽  
Patrick Butler ◽  
Steve Goldup

Chirality, the property of objects that are distinct from their own mirror image, is important in many scientific areas but particularly chemistry, where the appearance of molecular chirality because of rigid arrangements of atoms in space famously influences a molecule’s biological properties. Less generally appreciated is that two molecular rings with chemically distinct faces combined like links in a chain results in a chiral structure even when the rings are achiral. To date, no enantiopure examples of such mechanically axially chiral catenanes has been reported. We re-examined the symmetry properties of the mechanically axially chiral motif and identified a straightforward route to such molecules from simple building blocks. We also identify that common representations of axially chiral catenanes obscure that a previously overlooked stereogenic unit arises when a ring is threaded onto a dumbbell-shaped molecule to generate a rotaxane. These insights allowed us to demonstrate the first stereoselective syntheses of an axially chiral catenane and a noncanonical axially chiral rotaxane motif. With methods to access these structures in hand, the process of exploring their properties and applications can now begin.



2021 ◽  
Author(s):  
John Maynard ◽  
Peter Gallagher ◽  
David Lozano ◽  
Patrick Butler ◽  
Steve Goldup

Chirality, the property of objects that are distinct from their own mirror image, is important in many scientific areas but particularly chemistry, where the appearance of molecular chirality because of rigid arrangements of atoms in space famously influences a molecule’s biological properties. Less generally appreciated is that two molecular rings with chemically distinct faces combined like links in a chain results in a chiral structure even when the rings are achiral. To date, no enantiopure examples of such mechanically axially chiral catenanes has been reported. We re-examined the symmetry properties of the mechanically axially chiral motif and identified a straightforward route to such molecules from simple building blocks. We also identify that common representations of axially chiral catenanes obscure that a previously overlooked stereogenic unit arises when a ring is threaded onto a dumbbell-shaped molecule to generate a rotaxane. These insights allowed us to demonstrate the first stereoselective syntheses of an axially chiral catenane and a noncanonical axially chiral rotaxane motif. With methods to access these structures in hand, the process of exploring their properties and applications can now begin.



2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Young-Joo Kim ◽  
Junho Park ◽  
Jae Young Lee ◽  
Do-Nyun Kim

AbstractThe ultrasensitive threshold response is ubiquitous in biochemical systems. In contrast, achieving ultrasensitivity in synthetic molecular structures in a controllable way is challenging. Here, we propose a chemomechanical approach inspired by Michell’s instability to realize it. A sudden reconfiguration of topologically constrained rings results when the torsional stress inside reaches a critical value. We use DNA origami to construct molecular rings and then DNA intercalators to induce torsional stress. Michell’s instability is achieved successfully when the critical concentration of intercalators is applied. Both the critical point and sensitivity of this ultrasensitive threshold reconfiguration can be controlled by rationally designing the cross-sectional shape and mechanical properties of DNA rings.



2021 ◽  
Author(s):  
Chen-Hui Liu ◽  
Wei-Hui Fang ◽  
Yayong Sun ◽  
Shuyang Yao ◽  
San-Tai Wang ◽  
...  
Keyword(s):  


Author(s):  
Chen-Hui Liu ◽  
Wei-Hui Fang ◽  
Yayong Sun ◽  
Shuyang Yao ◽  
San-Tai Wang ◽  
...  
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document