anticipatory synergy adjustment
Recently Published Documents


TOTAL DOCUMENTS

2
(FIVE YEARS 1)

H-INDEX

1
(FIVE YEARS 0)

Motor Control ◽  
2020 ◽  
Vol 24 (3) ◽  
pp. 365-382
Author(s):  
Mitchell Tillman ◽  
Satyajit Ambike

The authors examined how the stability of the current total isometric force (FT) produced by four fingers is influenced by previous and expected voluntary changes in FT. The authors employed the synergy index obtained from the across-trial uncontrolled manifold analysis to quantify the stability of FT. The authors compared two tasks with similar histories of FT changes; one in which participants expected changes in FT in the future, and one in which they expected no changes in FT. The stability of FT was lower in the former task, indicating the existence of a novel type of anticipatory synergy adjustment. Disparate histories of FT changes yield inconsistent changes in stability, driven by individual differences in the covariation in the finger forces that leave FT invariant. Future research should focus on exploring these individual differences to better understand how previous and expected behavior changes influence the stability of the current motor behavior.


2018 ◽  
Vol 119 (1) ◽  
pp. 21-32 ◽  
Author(s):  
Mitchell Tillman ◽  
Satyajit Ambike

A motor system configured to maximize the stability of its current state cannot dexterously transition between states. Yet, we routinely resolve the stability-dexterity conflict and rapidly change our current behavior without allowing it to become unstable before the desired transition. The phenomenon called anticipatory synergy adjustment (ASA) partly describes how the central nervous system handles this conflict. ASA is a continuous decrease in the stability of the current motor state beginning 150–400 ms before a rapid state transition accomplished using redundant sets of motor inputs (more input variables than task-specific output variables). So far, ASAs have been observed only when the timing of the upcoming transition is known. We utilized a multifinger, isometric force-production task to demonstrate that compared with a condition where no state transition is expected, the stability of the current state is lower by ~12% when a participant is cued to make a transition, even when the nature and timing of that transition are unknown. This result (stage 1 ASA) is distinct from its traditional version (stage 2 ASA), and it describes early destabilization that occurs solely in response to the expectation to move. Stage 2 ASA occurs later, only if the timing of the transition is known sufficiently in advance. Stage 1 ASA lasts much longer (~1.5 s) and may scale in response to the perceived difficulty of the upcoming task. Therefore, this work reveals a much refined view of the processes that underlie the resolution of the stability-dexterity conflict. NEW & NOTEWORTHY We compared the stability of multifinger, isometric force-production tasks for trials in which force changes of unknown direction and timing were expected with trials in which there was no expectation of any force change. Mere expectation of a change caused the stability of the current motor state to drop. This novel result provides a much refined view of the processes that facilitate dexterous switching between motor states.


Sign in / Sign up

Export Citation Format

Share Document