krull monoid
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 3)

H-INDEX

5
(FIVE YEARS 0)

2022 ◽  
Vol 226 (4) ◽  
pp. 106887
Author(s):  
Victor Fadinger ◽  
Daniel Windisch
Keyword(s):  

Author(s):  
Victor Fadinger ◽  
Daniel Windisch
Keyword(s):  

Author(s):  
Alfred Geroldinger ◽  
Florian Kainrath

AbstractEvery Krull monoid has a transfer homomorphism onto a monoid of zero-sum sequences over a subset of its class group. This transfer homomorphism is a crucial tool for studying the arithmetic of Krull monoids. In the present paper, we strengthen and refine this tool for Krull monoids with finitely generated class group.


2017 ◽  
Vol 16 (12) ◽  
pp. 1750234 ◽  
Author(s):  
Yushuang Fan ◽  
Alfred Geroldinger ◽  
Florian Kainrath ◽  
Salvatore Tringali

Let [Formula: see text] be a commutative semigroup with unit element such that every non-unit can be written as a finite product of irreducible elements (atoms). For every [Formula: see text], let [Formula: see text] denote the set of all [Formula: see text] with the property that there are atoms [Formula: see text] such that [Formula: see text] (thus, [Formula: see text] is the union of all sets of lengths containing [Formula: see text]). The Structure Theorem for Unions states that, for all sufficiently large [Formula: see text], the sets [Formula: see text] are almost arithmetical progressions with the same difference and global bound. We present a new approach to this result in the framework of arithmetic combinatorics, by deriving, for suitably defined families of subsets of the non-negative integers, a characterization of when the Structure Theorem holds. This abstract approach allows us to verify, for the first time, the Structure Theorem for a variety of possibly non-cancellative semigroups, including semigroups of (not necessarily invertible) ideals and semigroups of modules. Furthermore, we provide the very first example of a semigroup (actually, a locally tame Krull monoid) that does not satisfy the Structure Theorem.


2014 ◽  
Vol 98 (3) ◽  
pp. 324-354 ◽  
Author(s):  
ALFRED GEROLDINGER ◽  
QINGHAI ZHONG

Let$H$be a Krull monoid with finite class group$G$such that every class contains a prime divisor (for example, a ring of integers in an algebraic number field or a holomorphy ring in an algebraic function field). The catenary degree$\mathsf{c}(H)$of$H$is the smallest integer$N$with the following property: for each$a\in H$and each pair of factorizations$z,z^{\prime }$of$a$, there exist factorizations$z=z_{0},\dots ,z_{k}=z^{\prime }$of$a$such that, for each$i\in [1,k]$,$z_{i}$arises from$z_{i-1}$by replacing at most$N$atoms from$z_{i-1}$by at most$N$new atoms. To exclude trivial cases, suppose that$|G|\geq 3$. Then the catenary degree depends only on the class group$G$and we have$\mathsf{c}(H)\in [3,\mathsf{D}(G)]$, where$\mathsf{D}(G)$denotes the Davenport constant of$G$. The cases when$\mathsf{c}(H)\in \{3,4,\mathsf{D}(G)\}$have been previously characterized (see Theorem A). Based on a characterization of the catenary degree determined in the paper by Geroldingeret al.[‘The catenary degree of Krull monoids I’,J. Théor. Nombres Bordeaux23(2011), 137–169], we determine the class groups satisfying$\mathsf{c}(H)=\mathsf{D}(G)-1$. Apart from the extremal cases mentioned, the precise value of$\mathsf{c}(H)$is known for no further class groups.


2014 ◽  
Vol 14 (02) ◽  
pp. 1550016 ◽  
Author(s):  
N. R. Baeth ◽  
A. Geroldinger ◽  
D. J. Grynkiewicz ◽  
D. Smertnig

Let R be a ring and let [Formula: see text] be a small class of right R-modules which is closed under finite direct sums, direct summands, and isomorphisms. Let [Formula: see text] denote a set of representatives of isomorphism classes in [Formula: see text] and, for any module M in [Formula: see text], let [M] denote the unique element in [Formula: see text] isomorphic to M. Then [Formula: see text] is a reduced commutative semigroup with operation defined by [M] + [N] = [M ⊕ N], and this semigroup carries all information about direct-sum decompositions of modules in [Formula: see text]. This semigroup-theoretical point of view has been prevalent in the theory of direct-sum decompositions since it was shown that if End R(M) is semilocal for all [Formula: see text], then [Formula: see text] is a Krull monoid. Suppose that the monoid [Formula: see text] is Krull with a finitely generated class group (for example, when [Formula: see text] is the class of finitely generated torsion-free modules and R is a one-dimensional reduced Noetherian local ring). In this case, we study the arithmetic of [Formula: see text] using new methods from zero-sum theory. Furthermore, based on module-theoretic work of Lam, Levy, Robson, and others we study the algebraic and arithmetic structure of the monoid [Formula: see text] for certain classes of modules over Prüfer rings and hereditary Noetherian prime rings.


2011 ◽  
Vol 10 (01) ◽  
pp. 1-27 ◽  
Author(s):  
ALBERTO FACCHINI ◽  
MARCO PERONE

The first aim of this article is to study maximal ideals of a preadditive category [Formula: see text]. Maximal ideals, which do not exist in general for arbitrary preadditive categories, are associated to a maximal ideal of the endomorphism ring of an object and always exist when the category is semilocal. If [Formula: see text] is additive and semilocal, any skeleton [Formula: see text] of [Formula: see text] is a Krull monoid and we are able to characterize the essential valuations of [Formula: see text] and provide some natural divisor homomorphisms and divisor theories of [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document