full coupling
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 13)

H-INDEX

14
(FIVE YEARS 3)

Author(s):  
Mischa Blaszczyk ◽  
Klaus Hackl

AbstractModeling of cancellous bone has important applications in the detection and treatment of fatigue fractures and diseases like osteoporosis. In this paper, we present a fully coupled multiscale approach considering mechanical, electric and magnetic effects by using the multiscale finite element method and a two-phase material model on the microscale. We show numerical results for both scales, including calculations for a femur bone, comparing a healthy bone to ones affected by different stages of osteoporosis. Here, the magnetic field strength resulting from a small mechanical impact decreases drastically for later stages of the disease, confirming experimental research.


2020 ◽  
Vol 12 (08) ◽  
pp. 2050095
Author(s):  
Linli Zhang ◽  
Gaetan Kerschen ◽  
Li Cheng

The phenomenon of acoustic black hole (ABH) exhibits unique and appealing features when bending waves propagate along a structure with a tailored power-law thickness profile. The ABH-induced wave retarding and energy focussing are conducive to effective wave manipulation and energy harvesting. Using a PZT-coated ABH beam as a benchmark, this paper investigates the electromechanical coupling between the PZT patches and the host beam and explores the resultant energy conversion efficiency for potential energy-harvesting (EH) applications. An improved semi-analytical model, considering the full coupling among various electromechanical components in the system, is proposed based on Timoshenko deformation assumption and validated through comparisons with FEM and experimental results. Numerical analyses are then conducted to show typical ABH-specific features as well as the influence of the PZT layout on the electromechanical coupling of the system and the corresponding EH efficiency. Results show that ABH effects entail effective and broadband EH upon proper design of the system with due consideration of the PZT layout in relation to the wavelength and frequency range. Some design guidelines on the installation of PZTs are provided in view of maximization of the ABH benefits and the energy-harvesting performance.


2020 ◽  
Vol 53 (1) ◽  
pp. 20-27
Author(s):  
Antti Mäntylä ◽  
Janne Juoksukangas ◽  
Jouko Hintikka ◽  
Tero Frondelius ◽  
Arto Lehtovaara

This article presents a robust Finite-Element-Method-based wear simulation method, particularly suitable for fretting contacts. This method utilizes the contact subroutine in a commercial finite element solver Abaqus. It is based on a user-defined contact formulation for both normal and tangential directions. For the normal contact direction, a nodal gap field is calculated by using a simple Archard's wear equation to describe the depth of material removal due to wear. The wear field is included in the contact pressure calculation to allow simulation of wear and contact stress evolution during the loading cycles. The main advantage of this approach is that all contact variables are accessible inside the routine, which allows full coupling between normal and tangential contact variables. Also, there is no need for mesh modifications during the solution. This makes the implementation flexible, robust and particularly suitable for fretting cases where friction and tangential contact stiffness play an essential role. The method is applied to the bolted joint type fretting test case. The methodology is also fully applicable to complex real component simulations.


2019 ◽  
Vol 2019 ◽  
pp. 1-16
Author(s):  
Haimin Zhu ◽  
Weifang Chen ◽  
Rupeng Zhu ◽  
Jie Gao ◽  
Meijun Liao

To accurately study the dynamic characteristics of the spiral bevel gear transmission system in a helicopter tail transmission system, the finite element model of the gear shaft was established by a Timoshenko beam element, and the mechanical model of the spiral bevel gear was created by the lumped mass method. The substructure method is employed to extract the dynamic parameters from the gearbox’s finite element model, and the dynamic model of the spiral bevel gear-shaft-bearing-gearbox coupling system was built according to the interface coordination conditions. In the model, the influences of time-varying stiffness, a time-varying transmission error, gearbox flexibility, unbalance excitation, and a flexible shaft and bearing support on the system vibration were taken into account simultaneously. On this basis, the dynamic differential equations of the full coupling system of the spiral bevel gear were derived, and the effects of the gearbox flexibility, the shaft angle, and the unbalance on the dynamic properties of the system were analysed. The results show that the gearbox flexibility can reduce the gear meshing force and bearing force, in which there is a more significant impact on the bearing force. The shaft angle affects the position, size, and direction of the system’s axis trajectory. Meanwhile, the meshing force and the bearing force of the system are also varied because of the various pitch angles of the driving and driven gears under different shaft angles. The unbalance of the gear shaft has an effect on the vibration of the spiral bevel gear transmission system in all directions, wherein the influence on the torsional vibration is the most significant, and the influence increases as the unbalance rises. The unbalance of the gear shaft also affects the meshing force and bearing force, which increases as the rotational speed rises. This research provides a theoretical basis to optimize dynamic performance and reduce the vibration and noise of a spiral bevel gear full coupling system.


2019 ◽  
Vol 392 ◽  
pp. 713-731 ◽  
Author(s):  
Shuai Li ◽  
A-Man Zhang ◽  
Rui Han ◽  
Qingwei Ma

Sign in / Sign up

Export Citation Format

Share Document