whitney forms
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 5)

H-INDEX

7
(FIVE YEARS 0)

Author(s):  
Lauri Kettunen ◽  
Jonni Lohi ◽  
Jukka Räbinä ◽  
Sanna Mönkölä ◽  
Tuomo Rossi

Finite difference kind of schemes are popular in approximating wave propagation problems in finite dimensional spaces. While Yee's original paper on the finite difference method is already from the sixties, mathematically there still remains questions which are not yet satisfactorily covered. In this paper, we address two issues of this kind. Firstly, in the literature Yee's scheme is constructed separately for each particular type of wave problem. Here, we explicitly generalize the Yee scheme to a class of wave problems that covers at large physics field theories. For this we introduce Yee's scheme for all problems of a class characterised on a Minkowski manifold by i) a pair of first order partial differential equations and by ii) a constitutive relation that couple the differential equations with a Hodge relation. In addition, we introduce a strategy to systematically exploit higher order Whitney elements in Yee-like approaches. This makes higher order interpolation possible both in time and space. For this, we show that Yee-like schemes preserve the local character of the Hodge relation, which is to say, the constitutive laws become imposed on a finite set of points instead of on all ordinary points of space. As a result, the usage of higher order Whitney forms does not compel to change the actual solution process at all. This is demonstrated with a simple example.


Author(s):  
Caroline Nore ◽  
Houda Zaidi ◽  
Frederic Bouillault ◽  
Alain Bossavit ◽  
Jean-Luc Guermond

Purpose – The purpose of this paper is to present a new formulation for taking into account the convective term due to an imposed velocity field in the induction equation in a code based on Whitney elements called DOLMEN. Different Whitney forms are used to approximate the dependent variables. The authors study the kinematic dynamo action in a von Kármán configuration and obtain results in good agreement with those provided by another well validated code called SFEMaNS. DOLMEN is developed to investigate the dynamo action in non-axisymmetric domains like the impeller driven flow of the von Kármán Sodium (VKS) experiment. The authors show that a 3D magnetic field dominated by an axisymmetric vertical dipole can grow in a kinematic dynamo configuration using an analytical velocity field. Design/methodology/approach – Different Whitney forms are used to approximate the dependent variables. The vector potential is discretized using first-order edge elements of the first family. The velocity is approximated by using the first-order Raviart-Thomas elements. The time stepping is done by using the Crank-Nicolson scheme. Findings – The authors study the kinematic dynamo action in a von Kármán configuration and obtain results in good agreement with those provided by another well validated code called SFEMaNS. The authors show that a 3D magnetic field dominated by an axisymmetric vertical dipole can grow in a kinematic dynamo configuration using an analytical velocity field. Originality/value – The findings offer a basis to a scenario for the VKS dynamo.


2015 ◽  
Vol 9 (2) ◽  
pp. 204-210 ◽  
Author(s):  
Nicolas Marsic ◽  
Christophe Geuzaine

Sign in / Sign up

Export Citation Format

Share Document