interval bound
Recently Published Documents


TOTAL DOCUMENTS

7
(FIVE YEARS 4)

H-INDEX

2
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Jeremie Giraud ◽  
Hoël Seillé ◽  
Mark D. Lindsay ◽  
Gerhard Visser ◽  
Vitaliy Ogarko ◽  
...  

Abstract. We propose, test and apply a methodology integrating 1D magnetotelluric (MT) and magnetic data inversion, with a focus on the characterization of the cover-basement interface. It consists of a cooperative inversion workflow relying on standalone inversion codes. Probabilistic information about the presence of rock units is derived from MT and passed on to magnetic inversion through constraints combining such structural constraints with petrophysical prior information. First, we perform the 1D probabilistic inversion of MT data for all sites and recover the respective probabilities of observing the cover-basement interface, which we interpolate to the rest of the study area. We then calculate the probabilities of observing the different rock units and partition the model into domains defined by combinations of rock units with non-zero probabilities. Third, we combine such domains with petrophysical information to apply spatially-varying, disjoint interval bound constraints to least-squares magnetic data inversion. We demonstrate the proof-of-concept using a realistic synthetic model reproducing features from the Mansfield area (Victoria, Australia) using a series of uncertainty indicators. We then apply the workflow to field data from the prospective mining region of Cloncurry (Queensland, Australia). Results indicate that our integration methodology efficiently leverages the complementarity between separate MT and magnetic data modelling approaches and can improve our capability to image the cover-basement interface. In the field application case, our findings also suggest that the proposed workflow may be useful to refine existing geological interpretations and to infer lateral variations within the basement.


Author(s):  
Aditya Jonnalagadda ◽  
Iuri Frosio ◽  
Seth Schneider ◽  
Morgan McGuire ◽  
Joohwan Kim

Game publishers and anti-cheat companies have been unsuccessful in blocking cheating in online gaming. We propose a novel, vision-based approach that captures the frame buffer's final state and detects illicit overlays. To this aim, we train and evaluate a DNN detector on a new dataset, collected using two first-person shooter games and three cheating software. We study the advantages and disadvantages of different DNN architectures operating on a local or global scale. We use output confidence analysis to avoid unreliable detections and inform when network retraining is required. In an ablation study, we show how to use Interval Bound Propagation (IBP) to build a detector that is also resistant to potential adversarial attacks and study IBP's interaction with confidence analysis. Our results show that robust and effective anti-cheating through machine learning is practically feasible and can be used to guarantee fair play in online gaming.


2021 ◽  
Author(s):  
Jeremie Giraud ◽  
Vitaliy Ogarko ◽  
Roland Martin ◽  
Mark Jessell ◽  
Mark Lindsay

Abstract. The quantitative integration of geophysical measurements with data and information from other disciplines is becoming increasingly important in answering the challenges of undercover imaging and of the modelling of complex areas. We propose a review of the different techniques for the utilisation of structural, petrophysical and geological information in single physics and joint inversion as implemented in the Tomofast-x open-source inversion platform. We detail the range of constraints that can be applied to the inversion of potential field data. The inversion examples we show illustrate a selection of scenarios using a realistic synthetic dataset inspired by real-world geological measurements and petrophysical data from the Hamersley region (Western Australia). Using Tomofast-x’s flexibility, we investigate inversions combining the utilisation of petrophysical, structural and/or geological constraints while illustrating the utilisation of the L-curve principle to determine regularisation weights. Our results suggest that the utilisation of geological information to derive disjoint interval bound constraints is the most effective method to recover the true model. It is followed by model smoothness and smallness conditioned by geological uncertainty, and cross-gradient minimisation.


2019 ◽  
Author(s):  
Po-Sen Huang ◽  
Robert Stanforth ◽  
Johannes Welbl ◽  
Chris Dyer ◽  
Dani Yogatama ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document