Least action nodal solutions for a quasilinear defocusing Schrödinger equation with supercritical nonlinearity

2019 ◽  
Vol 21 (05) ◽  
pp. 1850026 ◽  
Author(s):  
Minbo Yang ◽  
Carlos Alberto Santos ◽  
Jiazheng Zhou

In this paper, we consider the existence of least action nodal solutions for the quasilinear defocusing Schrödinger equation in [Formula: see text]: [Formula: see text] where [Formula: see text] is a positive continuous potential, [Formula: see text] is of subcritical growth, [Formula: see text] and [Formula: see text] are two non-negative parameters. By considering a minimizing problem restricted on a partial Nehari manifold, we prove the existence of least action nodal solution via deformation flow arguments and [Formula: see text]-estimates.

2018 ◽  
Vol 62 (1) ◽  
pp. 1-23 ◽  
Author(s):  
Minbo Yang ◽  
Carlos Alberto Santos ◽  
Jiazheng Zhou

AbstractIn this paper we consider the existence of least energy nodal solution for the defocusing quasilinear Schrödinger equation $$-\Delta u - u \Delta u^2 + V(x)u = a(x)[g(u) + \lambda \vert u \vert ^{p-2}u] \hbox{in} {\open R}^N,$$ where λ≥0 is a real parameter, V(x) is a non-vanishing function, a(x) can be a vanishing positive function at infinity, the nonlinearity g(u) is of subcritical growth, the exponent p≥22*, and N≥3. The proof is based on a dual argument on Nehari manifold by employing a deformation argument and an $L</italic>^{\infty}({\open R}^{N})$-estimative.


Author(s):  
Vincenzo Ambrosio

We study the multiplicity and concentration of complex-valued solutions for a fractional magnetic Schrödinger equation involving a scalar continuous electric potential satisfying a local condition and a continuous nonlinearity with subcritical growth. The main results are obtained by applying a penalization technique, generalized Nehari manifold method and Ljusternik–Schnirelman theory. We also prove a Kato's inequality for the fractional magnetic Laplacian which we believe to be useful in the study of other fractional magnetic problems.


2018 ◽  
Vol 2020 (8) ◽  
pp. 2501-2541
Author(s):  
Tristan Roy

Abstract We prove scattering of solutions of the loglog energy-supercritical Schrödinger equation $i \partial _{t} u + \triangle u = |u|^{\frac{4}{n-2}} u g(|u|)$ with $g(|u|) := \log ^{\gamma } {( \log{(10+|u|^{2})} )}$, $0 &lt; \gamma &lt; \gamma _{n}$, n ∈ {3, 4, 5}, and with radial data $u(0) := u_{0} \in \tilde{H}^{k}:= \dot{H}^{k} (\mathbb{R}^{n})\,\cap\,\dot{H}^{1} (\mathbb{R}^{n})$, where $\frac{n}{2} \geq k&gt; 1 \left(\text{resp.}\,\frac{4}{3}&gt; k &gt; 1\right)$ if n ∈ {3, 4} (resp. n = 5). The proof uses concentration techniques (see e.g., [ 2, 12]) to prove a long-time Strichartz-type estimate on an arbitrarily long time interval J depending on an a priori bound of some norms of the solution, combined with an induction on time of the Strichartz estimates in order to bound these norms a posteriori (see e.g., [ 8, 10]). We also revisit the scattering theory of solutions with radial data in $\tilde{H}^{k}$, $k&gt; \frac{n}{2}$, and n ∈ {3, 4}; more precisely, we prove scattering for a larger range of $\gamma$ s than in [ 10]. In order to control the barely supercritical nonlinearity for nonsmooth solutions, that is, solutions with data in $\tilde{H}^{k}$, $k \leq \frac{n}{2}$, we prove some Jensen-type inequalities.


2021 ◽  
pp. 1-19
Author(s):  
Jing Zhang ◽  
Lin Li

In this paper, we consider the following Schrödinger equation (0.1) − Δ u − μ u | x | 2 + V ( x ) u = K ( x ) | u | 2 ∗ − 2 u + f ( x , u ) , x ∈ R N , u ∈ H 1 ( R N ) , where N ⩾ 4, 0 ⩽ μ < μ ‾, μ ‾ = ( N − 2 ) 2 4 , V is periodic in x, K and f are asymptotically periodic in x, we take advantage of the generalized Nehari manifold approach developed by Szulkin and Weth to look for the ground state solution of (0.1).


2016 ◽  
Vol 18 (02) ◽  
pp. 1550021 ◽  
Author(s):  
Marcelo F. Furtado ◽  
Bruno N. Souza

We consider the problem [Formula: see text] where [Formula: see text] is a bounded smooth domain, [Formula: see text], [Formula: see text], [Formula: see text]. Under some suitable conditions on the continuous potential [Formula: see text] and on the parameter [Formula: see text], we obtain one nodal solution for [Formula: see text] and one positive solution for [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document