canonical foliation
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 3)

H-INDEX

1
(FIVE YEARS 0)

Author(s):  
Ntokozo Sibonelo Khuzwayo ◽  
Fortuné Massamba

We investigate a class of locally conformal almost Kähler structures and prove that, under some conditions, this class is a subclass of almost Kähler structures. We show that a locally conformal almost Kähler manifold admits a canonical foliation whose leaves are hypersurfaces with the mean curvature vector field proportional to the Lee vector field. The geodesibility of the leaves is also characterized, and their minimality coincides with the incompressibility of the Lee vector field along the leaves.



Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 333
Author(s):  
Elisabetta Barletta ◽  
Sorin Dragomir ◽  
Francesco Esposito

We study the semi-Riemannian geometry of the foliation F of an indefinite locally conformal Kähler (l.c.K.) manifold M, given by the Pfaffian equation ω=0, provided that ∇ω=0 and c=∥ω∥≠0 (ω is the Lee form of M). If M is conformally flat then every leaf of F is shown to be a totally geodesic semi-Riemannian hypersurface in M, and a semi-Riemannian space form of sectional curvature c/4, carrying an indefinite c-Sasakian structure. As a corollary of the result together with a semi-Riemannian version of the de Rham decomposition theorem any geodesically complete, conformally flat, indefinite Vaisman manifold of index 2s, 0<s<n, is locally biholomorphically homothetic to an indefinite complex Hopf manifold CHsn(λ), 0<λ<1, equipped with the indefinite Boothby metric gs,n.



Author(s):  
Roman Krutowski ◽  
Taras Panov

We describe the basic Dolbeault cohomology algebra of the canonical foliation on a class of complex manifolds with a torus symmetry group. This class includes complex moment-angle manifolds, LVM- and LVMB-manifolds and, in most generality, complex manifolds with a maximal holomorphic torus action. We also provide a DGA model for the ordinary Dolbeault cohomology algebra. The Hodge decomposition for the basic Dolbeault cohomology is proved by reducing to the transversely Kähler (equivalently, polytopal) case using a foliated analogue of toric blow-up.



2019 ◽  
Vol 16 (01) ◽  
pp. 1950011 ◽  
Author(s):  
Domenico Perrone

The main result of this paper gives a characterization of left-invariant almost [Formula: see text]-coKähler structures on three-dimensional (3D) semidirect product Lie groups [Formula: see text] in terms of the matrix [Formula: see text]. Then, we study the harmonicity of the Reeb vector field [Formula: see text] of a simply connected homogeneous almost [Formula: see text]-coKähler three-manifold, in terms of the Gaussian curvature of the canonical foliation.



2017 ◽  
Vol 53 (3) ◽  
pp. 311-329
Author(s):  
Liviu Ornea ◽  
Vladimir Slesar


2004 ◽  
Vol 01 (03) ◽  
pp. 367-428
Author(s):  
FRANCESCO NICOLÒ

We prove the existence of a "canonical foliation" on a null incoming hypersurface. Here "canonical" denotes a foliation whose level function is a solution of a given nonlinear system of equations. The existence of this foliation is an important ingredient for the construction of asymptotically flat global Einstein spacetimes, with appropriate initial conditions.







Sign in / Sign up

Export Citation Format

Share Document