ehresmann connection
Recently Published Documents


TOTAL DOCUMENTS

10
(FIVE YEARS 0)

H-INDEX

2
(FIVE YEARS 0)

Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 752
Author(s):  
Max Niedermaier

A tensor calculus adapted to the Anti-Newtonian limit of Einstein gravity is developed. The limit is defined in terms of a global conformal rescaling of the spatial metric. This enhances spacelike distances compared to timelike ones and in the limit effectively squeezes the lightcones to lines. Conventional tensors admit an analogous Anti-Newtonian limit, which however transforms according to a non-standard realization of the spacetime Diffeomorphism group. In addition to the type of the tensor the transformation law depends on, a set of integer-valued weights is needed to ensure the existence of a nontrivial limit. Examples are limiting counterparts of the metric, Einstein, and Riemann tensors. An adapted purely temporal notion of parallel transport is presented. By introducing a generalized Ehresmann connection and an associated orthonormal frame compatible with an invertible Carroll metric, the weight-dependent transformation laws can be mapped into a universal one that can be read off from the index structure. Utilizing this ‘decoupling map’ and a realization of the generalized Ehresmann connection in terms of scalar field, the limiting gravity theory can be endowed with an intrinsic Levi–Civita type notion of spatio-temporal parallel transport.



Author(s):  
N. I. Zhukova

It is shown that the structural theory of Molino for Riemannian foliations on compact manifolds and complete Riemannian manifolds may be generalized to a Riemannian foliations with Ehresmann connection. Within this generalization there are no restrictions on the codimension of the foliation and on the dimension of the foliated manifold. For a Riemannian foliation (M,F) with Ehresmann connection it is proved that the closure of any leaf forms a minimal set, the family of all such closures forms a singular Riemannian foliation (M,F¯¯¯¯). It is shown that in M there exists a connected open dense F¯¯¯¯-saturated subset M0 such that the induced foliation (M0,F¯¯¯¯|M0) is formed by fibers of a locally trivial bundle over some smooth Hausdorff manifold. The equivalence of some properties of Riemannian foliations (M,F) with Ehresmann connection is proved. In particular, it is shown that the structural Lie algebra of (M,F) is equal to zero if and only if the leaf space of (M,F) is naturally endowed with a smooth orbifold structure. Constructed examples show that for foliations with transversally linear connection and for conformal foliations the similar statements are not true in general.





2015 ◽  
Vol 12 (04) ◽  
pp. 1530002 ◽  
Author(s):  
Gabriel Catren

We use the theory of Cartan connections to analyze the geometrical structures underpinning the gauge-theoretical descriptions of the gravitational interaction. According to the theory of Cartan connections, the spin connection ω and the soldering form θ that define the fundamental variables of the Palatini formulation of general relativity can be understood as different components of a single field, namely a Cartan connection A = ω + θ. In order to stress both the similarities and the differences between the notions of Ehresmann connection and Cartan connection, we explain in detail how a Cartan geometry (PH → M, A) can be obtained from a G-principal bundle PG → M endowed with an Ehresmann connection (being the Lorentz group H a subgroup of G) by means of a bundle reduction mechanism. We claim that this reduction must be understood as a partial gauge fixing of the local gauge symmetries of PG, i.e. as a gauge fixing that leaves "unbroken" the local Lorentz invariance. We then argue that the "broken" part of the symmetry — that is the internal local translational invariance — is implicitly preserved by the invariance under the external diffeomorphisms of M.





2012 ◽  
Vol 09 (04) ◽  
pp. 1220005 ◽  
Author(s):  
MIRCEA CRASMAREANU

We prove that a pair (F = vector sub-bundle of TM, its annihilator) yields an almost Dirac structure which is Dirac if and only if F is Lie integrable. Then a flat Ehresmann connection on a fiber bundle ξ yields two complementary, but not orthogonally, Dirac structures on the total space M of ξ. These Dirac structures are also Lagrangian sub-bundles with respect to the natural almost symplectic structure of the big tangent bundle of M. The tangent bundle in Riemannian geometry is discussed as particular case and the 3-dimensional Heisenberg space is illustrated as example. More generally, we study the Bianchi–Cartan–Vranceanu metrics and their Hopf bundles.



2012 ◽  
Vol 91 (105) ◽  
pp. 19-24
Author(s):  
Aleksandar Baksa

This article deals with a dynamic system whose motion is constrained by nonholonomic, reonomic, affine constraints. The article analyses the geometrical properties of the ?reactions" of nonholonomic constraints in Voronets?s equations of motion. The analysis shows their link with the torsion of the Ehresmann connection, which is defined by the nonholonomic constraints.



2009 ◽  
Vol 24 (15) ◽  
pp. 2877-2888
Author(s):  
MARCIN SZAMOTULSKI ◽  
DOROTA MARCINIAK

We present a generalization of the construction of a principal G-bundle from a one Čech cocycle to the case of higher abelian gerbes. We prove that the sheaf of local sections of the associated bundle to a higher abelian gerbe is isomorphic to the sheaf of sections of the gerbe itself. Our main result states that equivalence classes of higher abelian gerbes are in bijection with isomorphism classes of the corresponding bundles. We also present topological characterization of those bundles. In the last section, we show that the usual notion of Ehresmann connection leads to the gerbe connection for higher ℂ*-gerbes.





1996 ◽  
Vol 119 (2) ◽  
pp. 373-381 ◽  
Author(s):  
Eduardo Martínez ◽  
José F. Cariñena

AbstractGiven an Ehresmann connection on the tangent bundle τ: TM → M we define a linear connection on the pull-back bundle τ*(TM). With the aid of this tool, necessary and sufficient conditions are derived for the existence of local coordinates in which a system of second-order differential equations is linear.



Sign in / Sign up

Export Citation Format

Share Document