scholarly journals A Menagerie of SU(2)-Cyclic 3-Manifolds

Author(s):  
Steven Sivek ◽  
Raphael Zentner

Abstract We classify $SU(2)$-cyclic and $SU(2)$-abelian 3-manifolds, for which every representation of the fundamental group into $SU(2)$ has cyclic or abelian image, respectively, among geometric 3-manifolds that are not hyperbolic. As an application, we give examples of hyperbolic 3-manifolds that do not admit degree-1 maps to any Seifert Fibered manifold other than $S^3$ or a lens space. We also produce infinitely many one-cusped hyperbolic manifolds with at least four $SU(2)$-cyclic Dehn fillings, one more than the number of cyclic fillings allowed by the cyclic surgery theorem.

1991 ◽  
Vol 33 (2) ◽  
pp. 125-128 ◽  
Author(s):  
Xingru Zhang

In [9] L. Moser classified all manifolds obtained by Dehn surgery on torus knots. In particular she proved the following (see also [8, Chapter IV]).Theorem 1 [9]. Nontrivial surgery with slope m/n on a nontrivial torus knot T(p, q) gives a manifold with cyclic fundamental group iff m = npq ± 1 and the manifold obtained is the lens space L(m, nq2).


2005 ◽  
Vol 92 (1) ◽  
pp. 203-223 ◽  
Author(s):  
SANGYOP LEE ◽  
SEUNGSANG OH ◽  
MASAKAZU TERAGAITO

In this paper we investigate the distances between Dehn fillings on a hyperbolic 3-manifold that yield 3-manifolds containing essential small surfaces including non-orientable surfaces. In particular, we study the situations where one filling creates an essential sphere or projective plane, and the other creates an essential sphere, projective plane, annulus, Möbius band, torus or Klein bottle, for all eleven pairs of such non-hyperbolic manifolds.


2018 ◽  
Vol 27 (08) ◽  
pp. 1850045
Author(s):  
Yuta Nozaki

For a cyclic covering map [Formula: see text] between two pairs of a 3-manifold and a knot each, we describe the fundamental group [Formula: see text] in terms of [Formula: see text]. As a consequence, we give an alternative proof for the fact that certain knots in [Formula: see text] cannot be represented as the preimage of any knot in a lens space, which is related to free periods of knots. In our proofs, the subgroup of a group [Formula: see text] generated by the commutators and the [Formula: see text]th power of each element of [Formula: see text] plays a key role.


2007 ◽  
Vol 143 (2) ◽  
pp. 419-447
Author(s):  
DANIEL MATIGNON ◽  
NABIL SAYARI

AbstractThis paper is devoted to 3-manifolds which admit two distinct Dehn fillings producing a Klein bottle.LetMbe a compact, connected and orientable 3-manifold whose boundary contains a 2-torusT. IfMis hyperbolic then only finitely many Dehn fillings alongTyield non-hyperbolic manifolds. We consider the situation where two distinct slopes γ1, γ2produce a Klein bottle. We give an upper bound for the distance Δ(γ1, γ2), between γ1and γ2. We show that there are exactly four hyperbolic manifolds for which Δ(γ1, γ2) > 4.


2011 ◽  
Vol 20 (04) ◽  
pp. 617-624 ◽  
Author(s):  
TOSHIO SAITO

Let K be a non-trivial knot in the 3-sphere with a lens space surgery and L(p, q) a lens space obtained by a Dehn surgery on K. We study a relationship between the order p of the fundamental group of L(p, q) and the Seifert genus g of K. Considering certain infinite families of knots with lens space surgeries, the following estimation is suggested as a conjecture: [Formula: see text] except for (g, p) = (5, 19).


2010 ◽  
Vol 19 (05) ◽  
pp. 677-694 ◽  
Author(s):  
SUNGMO KANG

If a hyperbolic 3-manifold M admits a reducible and a finite Dehn filling, the distance between the filling slopes is known to be 1. This has been proved recently by Boyer, Gordon and Zhang. The first example of a manifold with two such fillings was given by Boyer and Zhang. In this paper, we give examples of hyperbolic manifolds admitting a reducible Dehn filling and a finite Dehn filling of every type: cyclic, dihedral, tetrahedral, octahedral and icosahedral.


Author(s):  
Werner Müller

AbstractThis paper is concerned with the behavior of twisted Ruelle zeta functions of compact hyperbolic manifolds at the origin. Fried proved that for an orthogonal acyclic representation of the fundamental group of a compact hyperbolic manifold, the twisted Ruelle zeta function is holomorphic at $$s=0$$ s = 0 and its value at $$s=0$$ s = 0 equals the Reidemeister torsion. He also established a more general result for orthogonal representations, which are not acyclic. The purpose of the present paper is to extend Fried’s result to arbitrary finite dimensional representations of the fundamental group. The Reidemeister torsion is replaced by the complex-valued combinatorial torsion introduced by Cappell and Miller.


Author(s):  
Michelle Bucher ◽  
Marc Burger ◽  
Alessandra Iozzi

AbstractLet M be an oriented complete hyperbolic n-manifold of finite volume. Using the definition of volume of a representation previously given by the authors in [3] we show that the volume of a representation $$\rho :\pi _1(M)\rightarrow \mathrm {Isom}^+({{\mathbb {H}}}^n)$$ ρ : π 1 ( M ) → Isom + ( H n ) , properly normalized, takes integer values if n is even and $$\ge 4$$ ≥ 4 . If M is not compact and 3-dimensional, it is known that the volume is not locally constant. In this case we give explicit examples of representations with volume as arbitrary as the volume of hyperbolic manifolds obtained from M via Dehn fillings.


1999 ◽  
Vol 08 (03) ◽  
pp. 279-297 ◽  
Author(s):  
PATRICK J. CALLAHAN ◽  
JOHN C. DEAN ◽  
JEFFREY R. WEEKS

While the crossing number is the standard notion of complexity for knots, the number of ideal tetrahedra required to construct the complement provides a natural alternative. We determine which hyperbolic manifolds with 6 or fewer ideal tetrahedra are knot complements, and explicitly describe the corresponding knots in the 3-sphere. Thus, these 72 knots are the simplest knots according to this notion of complexity. Many of these knots have the structure of twisted torus knots. The initial observation that led to the project was the abundance of knot complements with small Seifert-fibered Dehn fillings among the census manifolds. Since many of these knots have rather large crossing number they do not appear in the knot tables. Our methods, while ad hoc, yield some detailed information about the knot complements as well as the manifolds that arise from exceptional surgeries on these knots.


Sign in / Sign up

Export Citation Format

Share Document