Topology of ambient manifolds of non-singular Morse – Smale flows with three periodic orbits

2021 ◽  
Vol 29 (6) ◽  
pp. 863-868
Author(s):  
Danila Shubin ◽  
◽  

The purpose of this study is to establish the topological properties of three-dimensional manifolds which admit Morse – Smale flows without fixed points (non-singular or NMS-flows) and give examples of such manifolds that are not lens spaces. Despite the fact that it is known that any such manifold is a union of circular handles, their topology can be investigated additionally and refined in the case of a small number of orbits. For example, in the case of a flow with two non-twisted (having a tubular neighborhood homeomorphic to a solid torus) orbits, the topology of such manifolds is established exactly: any ambient manifold of an NMS-flow with two orbits is a lens space. Previously, it was believed that all prime manifolds admitting NMS-flows with at most three non-twisted orbits have the same topology. Methods. In this paper, we consider suspensions over Morse – Smale diffeomorphisms with three periodic orbits. These suspensions, in turn, are NMS-flows with three periodic trajectories. Universal coverings of the ambient manifolds of these flows and lens spaces are considered. Results. In this paper, we present a countable set of pairwise distinct simple 3-manifolds admitting NMS-flows with exactly three non-twisted orbits. Conclusion. From the results of this paper it follows that there is a countable set of pairwise distinct three-dimensional manifolds other than lens spaces, which refutes the previously published result that any simple orientable manifold admitting an NMS-flow with at most three orbits is lens space.

2005 ◽  
Vol 14 (02) ◽  
pp. 177-188 ◽  
Author(s):  
YUICHI YAMADA

In 1990, John Berge described several families of knots in the three-dimensional sphere which have non-trivial Dehn surgeries yielding lens spaces. We study a subfamily of them from the view point of resolution of singularity of complex curves and surfaces, Kirby calculus in topology of four-dimensional manifolds and A'Campo's divide knot theory.


1998 ◽  
Vol 07 (02) ◽  
pp. 123-153 ◽  
Author(s):  
J. CASASAYAS ◽  
J. MARTINEZ ALFARO ◽  
A. NUNES

The main purpose of this paper is to prove that Bott integrable Hamiltonian flows and non-singular Morse-Smale flows are closely related. As a consequence, we obtain a classification of the knots and links formed by periodic orbits of Bott integrable Hamiltonians on the 3-sphere and on the solid torus. We also show that most of Fomenko's theory on the topology of the energy levels of Bott integrable Hamiltonians can be derived from Morgan's results on 3-manifolds that admit non-singular Morse-Smale flows.


1995 ◽  
Vol 15 (2) ◽  
pp. 317-331 ◽  
Author(s):  
M. Jiang ◽  
Ya B. Pesin ◽  
R. de la Llave

AbstractWe study the integrability of intermediate distributions for Anosov diffeomorphisms and provide an example of a C∞-Anosov diffeomorphism on a three-dimensional torus whose intermediate stable foliation has leaves that admit only a finite number of derivatives. We also show that this phenomenon is quite abundant. In dimension four or higher this can happen even if the Lyapunov exponents at periodic orbits are constant.


1983 ◽  
Vol 74 ◽  
pp. 213-224
Author(s):  
I.A. Robin ◽  
V.V. Markellos

AbstractA linearised treatment is presented of vertical bifurcations of symmetric periodic orbits(bifurcations of plane with three-dimensional orbits) in the circular restricted problem. Recent work on bifurcations from vertical-critical orbits (av = ±1) is extended to deal with the v more general situation of bifurcations from vertical self-resonant orbits (av = cos(2Πn/m) for integer m,n) and it is shown that in this more general case bifurcating families of three-dimensional orbits always occur in pairs, the orbital symmetry properties being governed by the evenness or oddness of the integer m. The applicability of the theory to the elliptic restricted problem is discussed.


1996 ◽  
Vol 241 (2) ◽  
pp. 249-262
Author(s):  
P. G. Kazantzis ◽  
C. D. Desiniotis

2013 ◽  
Vol 35 (2) ◽  
pp. 615-672
Author(s):  
ANNE VAUGON

AbstractOn a three-dimensional contact manifold with boundary, a bypass attachment is an elementary change of the contact structure consisting in the attachment of a thickened half-disc with a prescribed contact structure along an arc on the boundary. We give a model bypass attachment in which we describe the periodic orbits of the Reeb vector field created by the bypass attachment in terms of Reeb chords of the attachment arc. As an application, we compute the contact homology of a product neighbourhood of a convex surface after a bypass attachment, and the contact homology of some contact structures on solid tori.


Sign in / Sign up

Export Citation Format

Share Document