adiabatic invariant quantity
Recently Published Documents


TOTAL DOCUMENTS

4
(FIVE YEARS 0)

H-INDEX

2
(FIVE YEARS 0)

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Gulnihal Tokgoz ◽  
Izzet Sakalli

We studied the thermodynamics and spectroscopy of a 4-dimensional, z=0 Lifshitz black hole (Z0LBH). Using Wald’s entropy formula and the Hawking temperature, we derived the quasi-local mass of the Z0LBH. Based on the exact solution to the near-horizon Schrödinger-like equation (SLE) of the massive scalar waves, we computed the quasi-normal modes of the Z0LBH via employing the adiabatic invariant quantity for the Z0LBH. This study shows that the entropy and area spectra of the Z0LBH are equally spaced.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Shiwei Zhou ◽  
Ge-Rui Chen ◽  
Yong-Chang Huang

As a renormalizable theory of gravity, Hořava-Lifshitz gravity, might be an ultraviolet completion of general relativity and reduces to Einstein gravity with a nonvanishing cosmological constant in infrared. Kehagias and Sfetsos obtained a static spherically symmetric black hole solution called KS black hole in the IR modified Hořava-Lifshitz theory. In this paper, the entropy spectrum and area spectrum of a KS black hole are investigated based on the proposal of adiabatic invariant quantity. By calculating the action of producing a pair of particles near the horizon, it is obtained that the action of the system is exactly equivalent to the change of black hole entropy, which is an adiabatic invariant quantity. With the help of Bohr-Sommerfeld quantization rule, it is concluded that the entropy spectrum is discrete and equidistant spaced and the area spectrum is not equidistant spaced, which depends on the parameter of gravity theory. Some summary and discussion will be given in the last.


Sign in / Sign up

Export Citation Format

Share Document