scholarly journals Entropy Spectrum of a KS Black Hole in IR Modified Hořava-Lifshitz Gravity

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Shiwei Zhou ◽  
Ge-Rui Chen ◽  
Yong-Chang Huang

As a renormalizable theory of gravity, Hořava-Lifshitz gravity, might be an ultraviolet completion of general relativity and reduces to Einstein gravity with a nonvanishing cosmological constant in infrared. Kehagias and Sfetsos obtained a static spherically symmetric black hole solution called KS black hole in the IR modified Hořava-Lifshitz theory. In this paper, the entropy spectrum and area spectrum of a KS black hole are investigated based on the proposal of adiabatic invariant quantity. By calculating the action of producing a pair of particles near the horizon, it is obtained that the action of the system is exactly equivalent to the change of black hole entropy, which is an adiabatic invariant quantity. With the help of Bohr-Sommerfeld quantization rule, it is concluded that the entropy spectrum is discrete and equidistant spaced and the area spectrum is not equidistant spaced, which depends on the parameter of gravity theory. Some summary and discussion will be given in the last.

2014 ◽  
Vol 29 (36) ◽  
pp. 1450191 ◽  
Author(s):  
Xiao-Xiong Zeng ◽  
Qiang Li ◽  
Yi-Wen Han

Using exclusively an action variable, we quantize a static, spherically symmetric black hole. The spacings of the quantized entropy spectrum and area spectrum are found to be equal to the values given by Bekenstein. Interestingly, we find the spectra are independent of the hairs of the black holes and the mode of motion of a particle outside the spacetime, which depends only on the intrinsic properties of the gravity. Our result shows that the spectra are universal provided the spacetime owns a horizon.


2013 ◽  
Vol 28 (04) ◽  
pp. 1350003 ◽  
Author(s):  
R. THARANATH ◽  
V. C. KURIAKOSE

The thermodynamic and spectroscopic behavior of Schwarzschild black hole surrounded by quintessence are studied. We have derived the thermodynamic quantities and studied their behavior for different values of quintessence parameter. We put the background spacetime into the Kruskal-like coordinate to find the period with respect to Euclidean time. Also assuming that the adiabatic invariant obeys Bohr–Sommerfeld quantization rule, detailed study of area spectrum and entropy spectrum have been done for special cases of the quintessence state parameter. We find that the spectra are equally spaced.


2013 ◽  
Vol 28 (33) ◽  
pp. 1350149 ◽  
Author(s):  
SANEESH SEBASTIAN ◽  
V. C. KURIAKOSE

We study the thermodynamics and spectroscopy of a (2+1)-dimensional black hole proposed by Mandal et al.1 [Mod. Phys. Lett. A6, 1685 (1991)]. We put the background spacetime in Kruskal like co-ordinate and find period with respect to Euclidean time. Different thermodynamic quantities like entropy, specific heat, temperature etc. are obtained. The adiabatic invariant for the black hole is found and quantized using Bohr–Sommerfeld quantization rule. The study shows that the area spectrum of MSW black hole is equally spaced and the value of spacing is found to be ℏ.


2011 ◽  
Vol 96 (1) ◽  
pp. 10007 ◽  
Author(s):  
C. A. S. Silva ◽  
R. R. Landim

2012 ◽  
Vol 27 (24) ◽  
pp. 1250139 ◽  
Author(s):  
CHENG-ZHOU LIU

The spectroscopy of rotating black holes are investigated via an action invariance of black holes. Without using the quasinormal modes of black holes, the area and entropy spectrum for Kerr and Kerr–Newman black holes are calculated, respectively. For these rotating black holes, the same result of the equally spaced area and entropy spectrum is derived by utilizing the action invariance and with the help of Bohr–Sommerfield quantization rule. The present black hole spectroscopy is consistent not only to the result of other researches by the action invariance but also the original Bekenstein's spectra.


2018 ◽  
Vol 15 (09) ◽  
pp. 1850154 ◽  
Author(s):  
G. G. L. Nashed

In this paper, we study the mimetic theory and derive a new spherically symmetric black hole solution. The asymptotic behavior of this solution behaves as a flat spacetime. This black hole is characterized by the fact that it has different components of [Formula: see text] and [Formula: see text]. Nevertheless, both of these components have a coinciding Killing and event horizons. Furthermore, this black hole has curvature singularities which are stronger than those of the known black hole solutions in general relativity. This feature can be shown by calculating some invariants of curvature. We study the stability of the perturbation and the related anti-evaporation of the Nariai spacetime.


2011 ◽  
Vol 26 (39) ◽  
pp. 2963-2971 ◽  
Author(s):  
CHENG-ZHOU LIU

The area spectrum and entropy spectrum of the modified Schwarzschild black hole in gravity's rainbow are investigated via the quasinormal modes of the black hole. Using the modified Hod's method and Kunstatter's method that employ the proper frequency from the imaginary part other than the real part of the quasinormal modes, the area and entropy spacing of the black hole are calculated. The results obtained from these two methods agree with each other and the equally spaced area and entropy spectrum are derived. The obtained area and entropy spectrum are independent of the energies of test particles and are the same as from the usual Schwarzschild black hole.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Subenoy Chakraborty ◽  
Subhajit Saha

The paper deals with Hawking radiation from both a general static black hole and a nonstatic spherically symmetric black hole. In case of static black hole, tunnelling of nonzero mass particles is considered and due to complicated calculations, quantum corrections are calculated only up to the first order. The results are compared with those for massless particles near the horizon. On the other hand, for dynamical black hole, quantum corrections are incorporated using the Hamilton-Jacobi method beyond semiclassical approximation. It is found that different order correction terms satisfy identical differential equation and are solved by a typical technique. Finally, using the law of black hole mechanics, a general modified form of the black hole entropy is obtained considering modified Hawking temperature.


Sign in / Sign up

Export Citation Format

Share Document