statistical decision making
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 20)

H-INDEX

9
(FIVE YEARS 1)

Informatics ◽  
2021 ◽  
Vol 18 (3) ◽  
pp. 36-47
Author(s):  
A. Y. Kharin

In the problems of data flows analysis, the problems of statistical decision making on parameters of observed data flows are important. For their solution it is proposed to use sequential statistical decision rules. The rules are constructed for three models of observation flows: sequence of independent homogeneous observations; sequence of observations forming a time series with a trend; sequence of dependent observations forming a homogeneous Markov chain. For each case the situation is considered, where the model describes the observed stochastic data with a distortion. "Outliers" ("contamination") are used as the admissible distortions that adequately describe the majority of situations appear in practice. For such situations the families of sequential decision rules are proposed, and robust decision rules are constructed that allow to reduce influence of distortion to the efficiency characteristics. The results of computer experiments are given to illustrate the constructed decision rules.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Abdul Nasir ◽  
Naeem Jan ◽  
Abdu Gumaei ◽  
Sami Ullah Khan ◽  
Mabrook Al-Rakhami

Fuzzy sets and fuzzy logics are used to model events with imprecise, incomplete, and uncertain information. Researchers have developed numerous methods and techniques to cope with fuzziness or uncertainty. This research intends to introduce the novel concepts of complex neutrosophic relations (CNRs) and its types based on the idea of complex neutrosophic sets (CNSs). In addition, these concepts are supported by suitable examples. A CNR discusses the quality of a relationship using the degree of membership, the degree of abstinence, and the degree of nonmembership. Each of these degrees is a complex number from the unit circle in a complex plane. The real part of complex-valued degrees represents the amplitude term, while the imaginary part represents the phase term. This property empowers CNRs to model multidimensional variables. Moreover, some interesting properties and useful results have also been proved. Furthermore, the practicality of the proposed concepts is verified by an application, which discusses the use of the proposed concepts in statistical decision-making. Additionally, a comparative analysis between the novel concepts of CNRs and the existing methods is carried out.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Nima Rabiei ◽  
Elias G. Saleeby

Abstract The intersection or the overlap region of two n-dimensional ellipsoids plays an important role in statistical decision making in a number of applications. For instance, the intersection volume of two n-dimensional ellipsoids has been employed to define dissimilarity measures in time series clustering (see [M. Bakoben, T. Bellotti and N. M. Adams, Improving clustering performance by incorporating uncertainty, Pattern Recognit. Lett. 77 2016, 28–34]). Formulas for the intersection volumes of two n-dimensional ellipsoids are not known. In this article, we first derive exact formulas to determine the intersection volume of two hyper-ellipsoids satisfying a certain condition. Then we adapt and extend two geometric type Monte Carlo methods that in principle allow us to compute the intersection volume of any two generalized convex hyper-ellipsoids. Using the exact formulas, we evaluate the performance of the two Monte Carlo methods. Our numerical experiments show that sufficiently accurate estimates can be obtained for a reasonably wide range of n, and that the sample-mean method is more efficient. Finally, we develop an elementary fast Monte Carlo method to determine, with high probability, if two n-ellipsoids are separated or overlap.


Author(s):  
Antonio Andriella ◽  
Henrique Siqueira ◽  
Di Fu ◽  
Sven Magg ◽  
Pablo Barros ◽  
...  

Abstract Recent studies have revealed the key importance of modelling personality in robots to improve interaction quality by empowering them with social-intelligence capabilities. Most research relies on verbal and non-verbal features related to personality traits that are highly context-dependent. Hence, analysing how humans behave in a given context is crucial to evaluate which of those social cues are effective. For this purpose, we designed an assistive memory game, in which participants were asked to play the game obtaining support from an introvert or extroverted helper, whether from a human or robot. In this context, we aim to (i) explore whether selective verbal and non-verbal social cues related to personality can be modelled in a robot, (ii) evaluate the efficiency of a statistical decision-making algorithm employed by the robot to provide adaptive assistance, and (iii) assess the validity of the similarity attraction principle. Specifically, we conducted two user studies. In the human–human study (N=31), we explored the effects of helper’s personality on participants’ performance and extracted distinctive verbal and non-verbal social cues from the human helper. In the human–robot study (N=24), we modelled the extracted social cues in the robot and evaluated its effectiveness on participants’ performance. Our findings showed that participants were able to distinguish between robots’ personalities, and not between the level of autonomy of the robot (Wizard-of-Oz vs fully autonomous). Finally, we found that participants achieved better performance with a robot helper that had a similar personality to them, or a human helper that had a different personality.


2020 ◽  
Vol 51 (12) ◽  
pp. 2150-2166
Author(s):  
G. Rigatos ◽  
N. Zervos ◽  
M. Abbaszadeh ◽  
P. Siano ◽  
D. Serpanos ◽  
...  

Entropy ◽  
2020 ◽  
Vol 22 (5) ◽  
pp. 536
Author(s):  
Thomas Parr

In recent years, the “planning as inference” paradigm has become central to the study of behaviour. The advance offered by this is the formalisation of motivation as a prior belief about “how I am going to act”. This paper provides an overview of the factors that contribute to this prior. These are rooted in optimal experimental design, information theory, and statistical decision making. We unpack how these factors imply a functional architecture for motivated behaviour. This raises an important question: how can we put this architecture to work in the service of understanding observed neurobiological structure? To answer this question, we draw from established techniques in experimental studies of behaviour. Typically, these examine the influence of perturbations of the nervous system—which include pathological insults or optogenetic manipulations—to see their influence on behaviour. Here, we argue that the message passing that emerges from inferring what to do can be similarly perturbed. If a given perturbation elicits the same behaviours as a focal brain lesion, this provides a functional interpretation of empirical findings and an anatomical grounding for theoretical results. We highlight examples of this approach that influence different sorts of goal-directed behaviour, active learning, and decision making. Finally, we summarise their implications for the neuroanatomy of inferring what to do (and what not to).


Sign in / Sign up

Export Citation Format

Share Document