rate distortion theory
Recently Published Documents


TOTAL DOCUMENTS

126
(FIVE YEARS 17)

H-INDEX

18
(FIVE YEARS 2)

Entropy ◽  
2021 ◽  
Vol 23 (10) ◽  
pp. 1255
Author(s):  
Yuheng Bu ◽  
Weihao Gao ◽  
Shaofeng Zou ◽  
Venugopal V. Veeravalli

It has been reported in many recent works on deep model compression that the population risk of a compressed model can be even better than that of the original model. In this paper, an information-theoretic explanation for this population risk improvement phenomenon is provided by jointly studying the decrease in the generalization error and the increase in the empirical risk that results from model compression. It is first shown that model compression reduces an information-theoretic bound on the generalization error, which suggests that model compression can be interpreted as a regularization technique to avoid overfitting. The increase in empirical risk caused by model compression is then characterized using rate distortion theory. These results imply that the overall population risk could be improved by model compression if the decrease in generalization error exceeds the increase in empirical risk. A linear regression example is presented to demonstrate that such a decrease in population risk due to model compression is indeed possible. Our theoretical results further suggest a way to improve a widely used model compression algorithm, i.e., Hessian-weighted K-means clustering, by regularizing the distance between the clustering centers. Experiments with neural networks are provided to validate our theoretical assertions.


2021 ◽  
Vol 118 (32) ◽  
pp. e2023473118
Author(s):  
Christopher W. Lynn ◽  
Danielle S. Bassett

Many complex networks depend upon biological entities for their preservation. Such entities, from human cognition to evolution, must first encode and then replicate those networks under marked resource constraints. Networks that survive are those that are amenable to constrained encoding—or, in other words, are compressible. But how compressible is a network? And what features make one network more compressible than another? Here, we answer these questions by modeling networks as information sources before compressing them using rate-distortion theory. Each network yields a unique rate-distortion curve, which specifies the minimal amount of information that remains at a given scale of description. A natural definition then emerges for the compressibility of a network: the amount of information that can be removed via compression, averaged across all scales. Analyzing an array of real and model networks, we demonstrate that compressibility increases with two common network properties: transitivity (or clustering) and degree heterogeneity. These results indicate that hierarchical organization—which is characterized by modular structure and heterogeneous degrees—facilitates compression in complex networks. Generally, our framework sheds light on the interplay between a network’s structure and its capacity to be compressed, enabling investigations into the role of compression in shaping real-world networks.


2021 ◽  
Author(s):  
Ye Wang ◽  
Shuchin Aeron ◽  
Adnan Siraj Rakin ◽  
Toshiaki Koike-Akino ◽  
Pierre Moulin

2021 ◽  
Author(s):  
panjun sun

Abstract The solution of the contradiction between privacy protection and data utility is a research hotspot in the field of privacy protection. Aiming at the problem of tradeoff between privacy and utility in the scenario of differential privacy offline data release, the optimal differential privacy mechanism is studied by using the rate distortion theory. Firstly, based on Shannon communication theory, the noise channel model of differential privacy is abstracted, and the mutual information and the distortion function is used to measure the privacy and utility of data publishing, and the optimization model based on rate distortion theory is constructed. Secondly, considering the influence of associated auxiliary background knowledge on mutual information privacy leakage, a mutual information privacy measure based on joint events is proposed, and a minimum privacy leakage model is proposed by modifying the rate distortion function. Finally, aiming at the difficulty in solving the Lagrange multiplier method, an approximate algorithm for solving the mutual information privacy optimization channel mechanism is proposed based on the alternating iterative method. The effectiveness of the proposed iterative approximation method is verified by experimental simulation. At the same time, the experimental results show that the proposed method reduces the mutual information privacy leakage under the condition of limited distortion, and improves the data utility under the same privacy tolerance


2021 ◽  
pp. 30-35
Author(s):  
Vadim Gribunin ◽  
◽  
Andrey Timonov ◽  

Purpose of the article: optimization of the choice of information security tools in a multi-level automated system, taking into account higher levels, quality indicators of information security tools, as well as the general financial budget. Demonstration of analogies of solving these problems with known problems from communication theory. Research method: optimal choice of information security tools based on risk analysis and the Lagrange multiplier method; Optimal bit budget allocation based on the Waterfilling optimization algorithm. Optimal placement of information security tools in a multilevel automated system based on bisectional search. Obtained result: the article shows analogies between some problems of communication theory and the optimal choice of information security tools. The well-known problem of the optimal choice of information security tools is solved using the rate-distortion theory, the well-known problem of the optimal budget allocation for their purchase is solved by analogy with the problem of distributing the power of transmitters. For the first time, the problem posed for the optimal placement of information security tools in a multilevel automated system was solved by analogy with the problem of distributing the total bit budget between quantizers.


2020 ◽  
Vol 34 (04) ◽  
pp. 3300-3307
Author(s):  
Yuheng Bu ◽  
Weihao Gao ◽  
Shaofeng Zou ◽  
Venugopal Veeravalli

We show that model compression can improve the population risk of a pre-trained model, by studying the tradeoff between the decrease in the generalization error and the increase in the empirical risk with model compression. We first prove that model compression reduces an information-theoretic bound on the generalization error; this allows for an interpretation of model compression as a regularization technique to avoid overfitting. We then characterize the increase in empirical risk with model compression using rate distortion theory. These results imply that the population risk could be improved by model compression if the decrease in generalization error exceeds the increase in empirical risk. We show through a linear regression example that such a decrease in population risk due to model compression is indeed possible. Our theoretical results further suggest that the Hessian-weighted K-means clustering compression approach can be improved by regularizing the distance between the clustering centers. We provide experiments with neural networks to support our theoretical assertions.


2020 ◽  
Vol 34 (04) ◽  
pp. 5810-5817
Author(s):  
Masoumeh Soflaei ◽  
Hongyu Guo ◽  
Ali Al-Bashabsheh ◽  
Yongyi Mao ◽  
Richong Zhang

We consider the problem of learning a neural network classifier. Under the information bottleneck (IB) principle, we associate with this classification problem a representation learning problem, which we call “IB learning”. We show that IB learning is, in fact, equivalent to a special class of the quantization problem. The classical results in rate-distortion theory then suggest that IB learning can benefit from a “vector quantization” approach, namely, simultaneously learning the representations of multiple input objects. Such an approach assisted with some variational techniques, result in a novel learning framework, “Aggregated Learning”, for classification with neural network models. In this framework, several objects are jointly classified by a single neural network. The effectiveness of this framework is verified through extensive experiments on standard image recognition and text classification tasks.


Sign in / Sign up

Export Citation Format

Share Document