quantitative genetic model
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 4)

H-INDEX

18
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Áki Jarl Láruson ◽  
Matthew C Fitzpatrick ◽  
Stephen R Keller ◽  
Benjamin C Haller ◽  
Katie E Lotterhos

Gradient Forest (GF) is increasingly being used to forecast climate change impacts, but remains mostly untested for this purpose. We explore its robustness to assumption violations, and relationship to measures of fitness, using SLiM simulations with explicit genome architecture and a spatial metapopulation. We evaluate measures of GF offset in: (1) a neutral model with no environmental adaptation; (2) a monogenic "population genetic" model with a single environmentally adapted locus; and (3) a polygenic "quantitative genetic" model with two adaptive traits, each adapting to a different environment. Although we found GF Offset to be broadly correlated with fitness offsets under both single locus and polygenic architectures. It could also be confounded by neutral demography, genomic architecture, and the nature of the adaptive environment. GF Offset is a promising tool, but it is important to understand its limitations and underlying assumptions, especially when used in the context of forecasting maladaptation.


2020 ◽  
Author(s):  
Wei Xiong ◽  
Matthew Reynolds ◽  
Jose Crossa ◽  
Thomas Payne ◽  
Urs Schulthess ◽  
...  

Abstract The International Maize and Wheat Improvement Center (CIMMYT) develops and distributes annually elite wheat lines as international trials worldwide to assess their performance in different environments and utilization by partners for use in breeding or release as varieties. However, as elsewhere, the collaborator test sites where trials are evaluated have experienced climate change, with implications for how adapted wheat genotypes are bred. Using a standard quantitative genetic model and archived datasets for four global spring wheat trials, we show that the genotype-environment-interaction (GEI) has increased by up to 500% over recent decades. Notably crossover has increased over time, a critical indicator of changes in the ranking of cultivar performance in different environments. Climatic factors explain over 70% of the year-to-year variability in GEI and crossover interactions for yield. Examining yield responses of all genotypes in all trial environments from 1985 to 2017 reveals that climate change has increased GEI by ~ 49% and ranking change by ~38%. Genetic improvement of wheat targeted to high-yielding environments has exacerbated this increase, but the performance of new wheat germplasm developed to withstand heat and drought stress is more adapted and stable, offsetting the increase in ranking changes due to the warmer climate.


2019 ◽  
Vol 116 (46) ◽  
pp. 23225-23231 ◽  
Author(s):  
Maria R. Servedio ◽  
John M. Powers ◽  
Russell Lande ◽  
Trevor D. Price

In many species that form pair bonds, males display to their mate after pair formation. These displays elevate the female’s investment into the brood. This is a form of cooperation because without the display, female investment is reduced to levels that are suboptimal for both sexes. The presence of such displays is paradoxical as in their absence the male should be able to invest extra resources directly into offspring, to the benefit of both sexes. We consider that the origin of these displays lies in the exploitation of preexisting perceptual biases which increase female investment beyond that which is optimal for her, initially resulting in a sexual conflict. We use a combined population genetic and quantitative genetic model to show how this conflict becomes resolved into sexual cooperation. A cooperative outcome is most likely when perceptual biases are under selection pressures in other contexts (e.g., detection of predators, prey, or conspecifics), but this is not required. Cooperation between pair members can regularly evolve even when this provides no net advantage to the pair and when the display itself reduces a male’s contributions to raising the brood. The findings account for many interactions between the sexes that have been difficult to explain in the context of sexual selection.


Genetics ◽  
2018 ◽  
Vol 211 (3) ◽  
pp. 963-976 ◽  
Author(s):  
Pierre-Henri Clergeot ◽  
Nicolas O. Rode ◽  
Sylvain Glémin ◽  
Mikael Brandström Durling ◽  
Katarina Ihrmark ◽  
...  

Many eukaryote species, including taxa such as fungi or algae, have a lifecycle with substantial haploid and diploid phases. A recent theoretical model predicts that such haploid-diploid lifecycles are stable over long evolutionary time scales when segregating deleterious mutations have stronger effects in homozygous diploids than in haploids and when they are partially recessive in heterozygous diploids. The model predicts that effective dominance—a measure that accounts for these two effects—should be close to 0.5 in these species. It also predicts that diploids should have higher fitness than haploids on average. However, an appropriate statistical framework to conjointly investigate these predictions is currently lacking. In this study, we derive a new quantitative genetic model to test these predictions using fitness data of two haploid parents and their diploid offspring, and genome-wide genetic distance between haploid parents. We apply this model to the root-rot basidiomycete fungus Heterobasidion parviporum—a species where the heterokaryotic (equivalent to the diploid) phase is longer than the homokaryotic (haploid) phase. We measured two fitness-related traits (mycelium growth rate and the ability to degrade wood) in both homokaryons and heterokaryons, and we used whole-genome sequencing to estimate nuclear genetic distance between parents. Possibly due to a lack of power, we did not find that deleterious mutations were recessive or more deleterious when expressed during the heterokaryotic phase. Using this model to compare effective dominance among haploid-diploid species where the relative importance of the two phases varies should help better understand the evolution of haploid-diploid life cycles.


2016 ◽  
Vol 113 (8) ◽  
pp. E978-E986 ◽  
Author(s):  
Tanya M. Pennell ◽  
Freek J. H. de Haas ◽  
Edward H. Morrow ◽  
G. Sander van Doorn

Evolutionary conflict between the sexes can induce arms races in which males evolve traits that are detrimental to the fitness of their female partners, and vice versa. This interlocus sexual conflict (IRSC) has been proposed as a cause of perpetual intersexual antagonistic coevolution with wide-ranging evolutionary consequences. However, theory suggests that the scope for perpetual coevolution is limited, if traits involved in IRSC are subject to pleiotropic constraints. Here, we consider a biologically plausible form of pleiotropy that has hitherto been ignored in treatments of IRSC and arrive at drastically different conclusions. Our analysis is based on a quantitative genetic model of sexual conflict, in which genes controlling IRSC traits have side effects in the other sex, due to incompletely sex-limited gene expression. As a result, the genes are exposed to intralocus sexual conflict (IASC), a tug-of-war between opposing male- and female-specific selection pressures. We find that the interaction between the two forms of sexual conflict has contrasting effects on antagonistic coevolution: Pleiotropic constraints stabilize the dynamics of arms races if the mating traits are close to evolutionary equilibrium but can prevent populations from ever reaching such a state. Instead, the sexes are drawn into a continuous cycle of arms races, causing the buildup of IASC, alternated by phases of IASC resolution that trigger the next arms race. These results encourage an integrative perspective on the biology of sexual conflict and generally caution against relying exclusively on equilibrium stability analysis.


2015 ◽  
Vol 113 (2) ◽  
pp. 362-367 ◽  
Author(s):  
Jacob A. Moorad ◽  
Daniel H. Nussey

Increased maternal age at reproduction is often associated with decreased offspring performance in numerous species of plants and animals (including humans). Current evolutionary theory considers such maternal effect senescence as part of a unified process of reproductive senescence, which is under identical age-specific selective pressures to fertility. We offer a novel theoretical perspective by combining William Hamilton’s evolutionary model for aging with a quantitative genetic model of indirect genetic effects. We demonstrate that fertility and maternal effect senescence are likely to experience different patterns of age-specific selection and thus can evolve to take divergent forms. Applied to neonatal survival, we find that selection for maternal effects is the product of age-specific fertility and Hamilton’s age-specific force of selection for fertility. Population genetic models show that senescence for these maternal effects can evolve in the absence of reproductive or actuarial senescence; this implies that maternal effect aging is a fundamentally distinct demographic manifestation of the evolution of aging. However, brief periods of increasingly beneficial maternal effects can evolve when fertility increases with age faster than cumulative survival declines. This is most likely to occur early in life. Our integration of theory provides a general framework with which to model, measure, and compare the evolutionary determinants of the social manifestations of aging. Extension of our maternal effects model to other ecological and social contexts could provide important insights into the drivers of the astonishing diversity of lifespans and aging patterns observed among species.


2013 ◽  
Vol 181 (6) ◽  
pp. 725-736 ◽  
Author(s):  
Steinar Engen ◽  
Russell Lande ◽  
Bernt-Erik Sæther

Sign in / Sign up

Export Citation Format

Share Document