lévy density
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 1)

H-INDEX

2
(FIVE YEARS 0)

2021 ◽  
Vol 32 (1) ◽  
Author(s):  
Simon Godsill ◽  
Yaman Kındap

AbstractIn this paper novel simulation methods are provided for the generalised inverse Gaussian (GIG) Lévy process. Such processes are intractable for simulation except in certain special edge cases, since the Lévy density associated with the GIG process is expressed as an integral involving certain Bessel functions, known as the Jaeger integral in diffusive transport applications. We here show for the first time how to solve the problem indirectly, using generalised shot-noise methods to simulate the underlying point processes and constructing an auxiliary variables approach that avoids any direct calculation of the integrals involved. The resulting augmented bivariate process is still intractable and so we propose a novel thinning method based on upper bounds on the intractable integrand. Moreover, our approach leads to lower and upper bounds on the Jaeger integral itself, which may be compared with other approximation methods. The shot noise method involves a truncated infinite series of decreasing random variables, and as such is approximate, although the series are found to be rapidly convergent in most cases. We note that the GIG process is the required Brownian motion subordinator for the generalised hyperbolic (GH) Lévy process and so our simulation approach will straightforwardly extend also to the simulation of these intractable processes. Our new methods will find application in forward simulation of processes of GIG and GH type, in financial and engineering data, for example, as well as inference for states and parameters of stochastic processes driven by GIG and GH Lévy processes.


Extremes ◽  
2016 ◽  
Vol 19 (3) ◽  
pp. 371-403 ◽  
Author(s):  
Valentin Konakov ◽  
Vladimir Panov

2012 ◽  
Vol 44 (3) ◽  
pp. 842-873 ◽  
Author(s):  
Zhiyi Chi

Nonnegative infinitely divisible (i.d.) random variables form an important class of random variables. However, when this type of random variable is specified via Lévy densities that have infinite integrals on (0, ∞), except for some special cases, exact sampling is unknown. We present a method that can sample a rather wide range of such i.d. random variables. A basic result is that, for any nonnegative i.d. random variable X with its Lévy density explicitly specified, if its distribution conditional on X ≤ r can be sampled exactly, where r > 0 is any fixed number, then X can be sampled exactly using rejection sampling, without knowing the explicit expression of the density of X. We show that variations of the result can be used to sample various nonnegative i.d. random variables.


2012 ◽  
Vol 44 (03) ◽  
pp. 842-873 ◽  
Author(s):  
Zhiyi Chi

Nonnegative infinitely divisible (i.d.) random variables form an important class of random variables. However, when this type of random variable is specified via Lévy densities that have infinite integrals on (0, ∞), except for some special cases, exact sampling is unknown. We present a method that can sample a rather wide range of such i.d. random variables. A basic result is that, for any nonnegative i.d. random variableXwith its Lévy density explicitly specified, if its distributionconditionalonX≤rcan be sampled exactly, wherer> 0 is any fixed number, thenXcan be sampled exactly using rejection sampling, without knowing the explicit expression of the density ofX. We show that variations of the result can be used to sample various nonnegative i.d. random variables.


Sign in / Sign up

Export Citation Format

Share Document