blur kernel
Recently Published Documents


TOTAL DOCUMENTS

123
(FIVE YEARS 48)

H-INDEX

11
(FIVE YEARS 3)

Optik ◽  
2021 ◽  
Vol 248 ◽  
pp. 168023
Author(s):  
Wei Zhou ◽  
Xingxing Hao ◽  
Jin Cui ◽  
Yongxiang Yu ◽  
Xin Cao ◽  
...  

Author(s):  
Pooja S.* ◽  
◽  
Mallikarjunaswamy S. ◽  
Sharmila N. ◽  
◽  
...  

Image deblurring is a challenging illposed problem with widespread applications. Most existing deblurring methods make use of image priors or priors on the PSF to achieve accurate results. The performance of these methods depends on various factors such as the presence of well-lit conditions in the case of dark image priors and in case of statistical image priors the assumption the image follows a certain distribution might not be fully accurate. This holds for statistical priors used on the blur kernel as well. The aim of this paper is to propose a novel image deblurring method which can be readily extended to various applications such that it effectively deblurs the image irrespective of the various factors affecting its capture. A hybrid regularization method is proposed which uses a TV regularization framework with varying sparsity inducing priors. The edges of the image are accurately recovered due to the TV regularization. The sparsity prior is implemented through a dictionary such that varying weights of sparsity is induced based on the different image regions. This helps in smoothing the unwanted artifacts generated due to blur in the uniform regions of the image.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4820
Author(s):  
Hongshan Zhao ◽  
Bingcong Liu ◽  
Lingjie Wang

Infrared sensing technology is more and more widely used in the construction of power Internet of Things. However, due to cost constraints, it is difficult to achieve the large-scale installation of high-precision infrared sensors. Therefore, we propose a blind super-resolution method for infrared images of power equipment to improve the imaging quality of low-cost infrared sensors. If the blur kernel estimation and non-blind super-resolution are performed at the same time, it is easy to produce sub-optimal results, so we chose to divide the blind super-resolution into two parts. First, we propose a blur kernel estimation method based on compressed sensing theory, which accurately estimates the blur kernel through low-resolution images. After estimating the blur kernel, we propose an adaptive regularization non-blind super-resolution method to achieve the high-quality reconstruction of high-resolution infrared images. According to the final experimental demonstration, the blind super-resolution method we proposed can effectively reconstruct low-resolution infrared images of power equipment. The reconstructed image has richer details and better visual effects, which can provide better conditions for the infrared diagnosis of the power system.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4109
Author(s):  
Yan Wang ◽  
Lingjie Wang ◽  
Bingcong Liu ◽  
Hongshan Zhao

Infrared images of power equipment play an important role in power equipment status monitoring and fault identification. Aiming to resolve the problems of low resolution and insufficient clarity in the application of infrared images, we propose a blind super-resolution algorithm based on the theory of compressed sensing. It includes an improved blur kernel estimation method combined with compressed sensing theory and an improved infrared image super-resolution reconstruction algorithm based on block compressed sensing theory. In the blur kernel estimation method, we propose a blur kernel estimation algorithm under the compressed sensing framework to realize the estimation of the blur kernel from low-resolution images. In the estimation process, we define a new norm to constrain the gradient image in the iterative process by analyzing the significant edge intensity changes before and after the image is blurred. With the norm, the salient edges can be selected and enhanced, the intermediate latent image generated by the iteration can move closer to the clear image, and the accuracy of the blur kernel estimation can be improved. For the super-resolution reconstruction algorithm, we introduce a blur matrix and a regular total variation term into the traditional compressed sensing model and design a two-step total variation sparse iteration (TwTVSI) algorithm. Therefore, while ensuring the computational efficiency, the boundary effect caused by the block processing inside the image is removed. In addition, the design of the TwTVSI algorithm can effectively process the super-resolution model of compressed sensing with a sparse dictionary, thereby breaking through the reconstruction performance limitation of the traditional regularized super-resolution method of compressed sensing due to the lack of sparseness in the signal transform domain. The final experimental results also verify the effectiveness of our blind super-resolution algorithm.


2021 ◽  
Author(s):  
Phong Tran ◽  
Anh Tuan Tran ◽  
Quynh Phung ◽  
Minh Hoai

Sign in / Sign up

Export Citation Format

Share Document