white noise model
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 2)

H-INDEX

7
(FIVE YEARS 1)

Author(s):  
Sheng Xu ◽  
Chun-yan Ji ◽  
C Guedes Soares

In this article, a novel mooring system with side-mooring lines is proposed for a traditional shape semi-submersible platform with four columns. To obtain the dynamics of moored system, model tests were carried out at a wave basin, including free-decay model tests, white noise model tests and irregular model tests. The natural periods in heave, roll and pitch models were measured and compared with numerical results. The motion response amplitude operators under 90° and 135° waves were obtained from white noise model tests and then compared with numerical simulations. A 100-year sea state in South China Sea was simulated in the wave basin by the JONSWAP spectrum, and the 6-degree-of-freedom motion responses of semi-submersible and mooring tensions were recorded in beam and quartering seas. The effects of the side-mooring lines on the floating platform motion response, mooring tensions and mooring fatigue damage are evaluated by comparing the results with and without side-mooring lines installed.


2019 ◽  
Vol 11 (3) ◽  
pp. 347 ◽  
Author(s):  
Yulong Ge ◽  
Peipei Dai ◽  
Weijin Qin ◽  
Xuhai Yang ◽  
Feng Zhou ◽  
...  

Thanks to the international GNSS service (IGS), which has provided multi-GNSS precise products, multi-GNSS precise point positioning (PPP) time and frequency transfer has of great interest in the timing community. Currently, multi-GNSS PPP time transfer is not investigated with different precise products. In addition, the correlation of the receiver clock offsets between adjacent epochs has not been studied in multi-GNSS PPP. In this work, multi-GNSS PPP time and frequency with different precise products is first compared in detail. A receiver clock offset model, considering the correlation of the receiver clock offsets between adjacent epochs using an a priori value, is then employed to improve multi-GNSS PPP time and frequency (scheme2). Our numerical analysis clarify how the approach performs for multi-GNSS PPP time and frequency transfer. Based on two commonly used multi-GNSS products and six GNSS stations, three conclusions are obtained straightforwardly. First, the GPS-only, Galileo-only, and multi-GNSS PPP solutions show similar performances using GBM and COD products, while BDS-only PPP using GBM products is better than that using COD products. Second, multi-GNSS time transfer outperforms single GNSS by increasing the number of available satellites and improving the time dilution of precision. For single-system and multi-GNSS PPP with GBM products, the maximum improvement in root mean square (RMS) values for multi-GNSS solutions are up to 7.4%, 94.0%, and 57.3% compared to GPS-only, BDS-only, and Galileo-only solutions, respectively. For stability, the maximum improvement of multi-GNSS is 20.3%, 84%, and 45.4% compared to GPS-only, BDS-only and Galileo-only solutions. Third, our approach contains less noise compared to the solutions with the white noise model, both for the single-system model and the multi-GNSS model. The RMS values of our approach are improved by 37.8–91.9%, 10.5–65.8%, 2.7–43.1%, and 26.6–86.0% for GPS-only, BDS-only, Galileo-only, and multi-GNSS solutions. For frequency stability, the improvement of scheme2 ranges from 0.2 to 51.6%, from 3 to 80.0%, from 0.2 to 70.8%, and from 0.1 to 51.5% for GPS-only, BDS-only, Galileo-only, and multi-GNSS PPP solutions compared to the solutions with the white noise model in the Eurasia links.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
M. A. Goudarzi ◽  
M. Cocard ◽  
R. Santerre

AbstractWe analyzed the noise characteristics of 112 continuously operating GPS stations in eastern North America using the Spectral Analysis and the Maximum Likelihood Estimation (MLE) methods. Results of both methods show that the combination ofwhite plus flicker noise is the best model for describing the stochastic part of the position time series. We explored this further using the MLE in the time domain by testing noise models of (a) powerlaw, (b)white, (c)white plus flicker, (d)white plus randomwalk, and (e) white plus flicker plus random-walk. The results show that amplitudes of all noise models are smallest in the north direction and largest in the vertical direction. While amplitudes of white noise model in (c–e) are almost equal across the study area, they are prevailed by the flicker and Random-walk noise for all directions. Assuming flicker noise model increases uncertainties of the estimated velocities by a factor of 5–38 compared to the white noise model.


2015 ◽  
Vol 164 (3-4) ◽  
pp. 771-813 ◽  
Author(s):  
B. T. Knapik ◽  
B. T. Szabó ◽  
A. W. van der  Vaart ◽  
J. H. van  Zanten

2013 ◽  
Vol 7 (0) ◽  
pp. 991-1018 ◽  
Author(s):  
B. T. Szabó ◽  
A. W. van der Vaart ◽  
J. H. van Zanten

Sign in / Sign up

Export Citation Format

Share Document