emg power spectrum
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 1)

H-INDEX

25
(FIVE YEARS 0)

Author(s):  
Carina Marconi Germer ◽  
Dario Farina ◽  
Leonardo Abdala Elias ◽  
Stefano Nuccio ◽  
François Hug ◽  
...  

Crosstalk is an important source of error in interpreting surface electromyography (EMG) signals. Here, we aimed at characterizing crosstalk for three groups of synergistic muscles by the identification of individual motor unit action potentials. Moreover, we explored whether spatial filtering (single and double differential) of the EMG signals influences the level of crosstalk. Three experiments were conducted. Participants (total twenty-five) performed isometric contractions at 10% of the maximal voluntary contraction (MVC) with digit muscles and knee extensors, and at 30% MVC with plantar flexors. High-density surface EMG signals were recorded and decomposed into motor unit spike trains. For each muscle, we quantified the crosstalk induced to neighboring muscles and the level of contamination by the nearby muscle activity. We also estimated the influence of crosstalk on the EMG power spectrum and intermuscular correlation. Most motor units (80%) generated significant crosstalk signals to neighboring muscle EMG in monopolar recording mode, but this proportion decreased with spatial filtering (50% and 42% for single and double differential, respectively). Crosstalk induced overestimations of intermuscular correlation and has a small effect on the EMG power spectrum, which indicates that crosstalk is not reduced with high-pass temporal filtering. Conversely, spatial filtering diminished the crosstalk magnitude and the overestimations of intermuscular correlation, confirming to be an effective and simple technique to reduce crosstalk. This paper presents a new method for the identification and quantification of crosstalk at the motor unit level and clarifies the influence of crosstalk on EMG interpretation for muscles with different anatomy.


2008 ◽  
Vol 435 (3) ◽  
pp. 181-185 ◽  
Author(s):  
F. Lebon ◽  
D. Rouffet ◽  
C. Collet ◽  
A. Guillot

2006 ◽  
Vol 321-323 ◽  
pp. 1119-1122 ◽  
Author(s):  
Hyeon Ki Choi ◽  
Won Hak Cho

This study addressed the effect of balance control problems on the high-heeled women. The specific purposes of this study are to quantify the displacements and velocities of center-of-pressure (COP) of a body during waist pulling perturbation and to compare the differences between the bare-feet and the high-heeled. Another purpose of the study is to identify the effects of a high-heeled posture on electromyography (EMG) activities and muscle fatigue. We used a waist pulling system which has three different magnitudes to sway the subjects. The COP displacement of a high-heeled posture was about twice as much as that of bare-feet posture. Also the COP velocity of a high-heeled posture became about twice as much as that of bare-feet posture. Muscle fatigue could be identified by the shift of the median frequency (MF) of the EMG power spectrum toward lower frequencies. Median frequency of the EMG power spectrum from tibialis anterior was reduced more rapidly during high-heeled situation than during bare-feet situation. COP kinematics and muscle fatigue analysis in postural balance researches are considered to provide useful information in understanding the balance control mechanism of women’s high-heeled posture.


Sign in / Sign up

Export Citation Format

Share Document