nymphal tick
Recently Published Documents


TOTAL DOCUMENTS

11
(FIVE YEARS 2)

H-INDEX

5
(FIVE YEARS 1)

Author(s):  
Gebbiena M Bron ◽  
Xia Lee ◽  
Susan M Paskewitz

Abstract Lyme disease is the most common vector-borne disease in the United States with hotspots in the Northeast and Midwest. Integrated vector control for mosquito-borne disease prevention is often organized at the community level, but tick control is primarily coordinated at the household and individual level. Management of the blacklegged tick, Ixodes scapularis (Say), the vector of the causative agent of Lyme disease in the Midwest and eastern United States in peridomestic environments may be critical as many tick encounters are reported to occur in the yard. Therefore, we assessed the effectiveness of a widely available and low-cost pesticide that targets common lawn pests and is labeled for use against ticks. In June 2019, we evaluated a granular form of gamma-cyhalothrin in a placebo-controlled residential backyard study (n = 90) in two communities in Wisconsin. The product applied by the research team reduced nymphal blacklegged ticks in plots established in the lawn part of the ecotone by 97% one week after application at both communities and by 89–97% three to four weeks postapplication. The proportion of homes with at least one nymphal tick postapplication was significantly lower at acaricide-treated homes and ranged from 4.2 to 29.2% compared with placebo homes where at least one nymphal tick was found at 50–81.5% of homes. These results support the efficacy of a low-cost do-it-yourself strategy for homeowners seeking to reduce blacklegged ticks in the yard.


2019 ◽  
Vol 56 (4) ◽  
pp. 1095-1101 ◽  
Author(s):  
Robert A Jordan ◽  
Terry L Schulze

Abstract Host-targeted technologies provide an alternative to the use of conventional pesticide applications to reduce the abundance of Ixodes scapularis Say, the vector for an array of tick-associated human diseases. We compared the ability of Damminx Tick Tubes (Damminix) and SELECT Tick Control System (Select TCS) bait boxes to control host-seeking I. scapularis nymphs in a wooded residential environment. Small mammals accepted and used Select TCS bait boxes with greater frequency compared to Damminix tubes over the course of the 2-yr trial. Nymphal tick infestation prevalence and intensity on captured mice and chipmunks provided no conclusive evidence of a treatment effect during May–June of both years. However, both treatments had a measurable effect on larval tick burdens in July–August and the magnitude of the effect was greater at the Select TCS-treated area and reflected the fact that Select TCS effectively treated chipmunks, while Damminix did not. Deployment of Damminix resulted in 27.6 and 20.3% control of questing nymphs in treated areas at 1 yr and 2 yr postintervention, while Select TCS bait boxes provided 84.0 and 79.1% control, respectively. The economics of residential tick control using these products in wooded residential landscapes is discussed.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
J. Charles Hoxmeier ◽  
Amy C. Fleshman ◽  
Corey D. Broeckling ◽  
Jessica E. Prenni ◽  
Marc C. Dolan ◽  
...  
Keyword(s):  

2016 ◽  
Vol 83 (3) ◽  
Author(s):  
Jonas Durand ◽  
Coralie Herrmann ◽  
Dolores Genné ◽  
Anouk Sarr ◽  
Lise Gern ◽  
...  

ABSTRACT Mixed or multiple-strain infections are common in vector-borne diseases and have important implications for the epidemiology of these pathogens. Previous studies have mainly focused on interactions between pathogen strains in the vertebrate host, but little is known about what happens in the arthropod vector. Borrelia afzelii and Borrelia garinii are two species of spirochete bacteria that cause Lyme borreliosis in Europe and that share a tick vector, Ixodes ricinus. Each of these two tick-borne pathogens consists of multiple strains that are often differentiated using the highly polymorphic ospC gene. For each Borrelia species, we studied the frequencies and abundances of the ospC strains in a wild population of I. ricinus ticks that had been sampled from the same field site over a period of 3 years. We used quantitative PCR (qPCR) and 454 sequencing to estimate the spirochete load and the strain diversity within each tick. For B. afzelii, there was a negative relationship between the two most common ospC strains, suggesting the presence of competitive interactions in the vertebrate host and possibly the tick vector. The flat relationship between total spirochete abundance and strain richness in the nymphal tick indicates that the mean abundance per strain decreases as the number of strains in the tick increases. Strains with the highest spirochete load in the nymphal tick were the most common strains in the tick population. The spirochete abundance in the nymphal tick appears to be an important life history trait that explains why some strains are more common than others in nature. IMPORTANCE Lyme borreliosis is the most common vector-borne disease in the Northern Hemisphere and is caused by spirochete bacteria that belong to the Borrelia burgdorferi sensu lato species complex. These tick-borne pathogens are transmitted among vertebrate hosts by hard ticks of the genus Ixodes. Each Borrelia species can be further subdivided into genetically distinct strains. Multiple-strain infections are common in both the vertebrate host and the tick vector and can result in competitive interactions. To date, few studies on multiple-strain vector-borne pathogens have investigated patterns of cooccurrence and abundance in the arthropod vector. We demonstrate that the abundance of a given strain in the tick vector is negatively affected by the presence of coinfecting strains. In addition, our study suggests that the spirochete abundance in the tick is an important life history trait that can explain why some strains are more common in nature than others.


2010 ◽  
Vol 78 (7) ◽  
pp. 2910-2918 ◽  
Author(s):  
Haijun Xu ◽  
Ming He ◽  
Jane Jingyuan He ◽  
X. Frank Yang

ABSTRACT Borrelia burgdorferi, the Lyme disease pathogen, dramatically alters its protein profile when it is transmitted between ticks and mammals. Several differentially expressed proteins have been shown to be critical for the enzootic cycle of B. burgdorferi. In this study, we demonstrated that expression of the surface lipoprotein-encoding gene bba07 is induced by an elevated temperature and a reduced pH during in vitro cultivation, as well as during nymphal tick feeding. Expression of bba07 is regulated by the Rrp2-RpoN-RpoS pathway, a central regulatory network that is activated during nymphal feeding. By generating a bba07 mutant of an infectious strain of B. burgdorferi, we demonstrated that although BBA07-deficient spirochetes were capable of infecting mice via needle inoculation and surviving in ticks, they were defective in infection of mammals via tick transmission. Complementation of the bba07 mutant with a wild-type copy of bba07 partially restored the transmission defect of the bba07 mutant. Based on these findings, we concluded that the surface lipoprotein BBA07 is produced during tick feeding and facilitates optimal transmission of B. burgdorferi from the tick vector to a mammalian host.


2009 ◽  
Vol 60 (2) ◽  
pp. 135-137 ◽  
Author(s):  
Takeo YAMAUCHI ◽  
Yukie SHIMAZU ◽  
Hideo MIZUTA
Keyword(s):  

2003 ◽  
Vol 69 (8) ◽  
pp. 4561-4565 ◽  
Author(s):  
Guiqing Wang ◽  
Dionysios Liveris ◽  
Brandon Brei ◽  
Hongyan Wu ◽  
Richard C. Falco ◽  
...  

ABSTRACT The density of spirochetes in field-collected or experimentally infected ticks is estimated mainly by assays based on microscopy. In this study, a real-time quantitative PCR (qPCR) protocol targeting the Borrelia burgdorferi-specific recA gene was adapted for use with a Lightcycler for rapid detection and quantification of the Lyme disease spirochete, B. burgdorferi, in field-collected Ixodes scapularis ticks. The sensitivity of qPCR for detection of B. burgdorferi DNA in infected ticks was comparable to that of a well-established nested PCR targeting the 16S-23S rRNA spacer. Of the 498 I. scapularis ticks collected from four northeastern states (Rhode Island, Connecticut, New York, and New Jersey), 91 of 438 (20.7%) nymphal ticks and 15 of 60 (25.0%) adult ticks were positive by qPCR assay. The number of spirochetes in individual ticks varied from 25 to 197,200 with a mean of 1,964 spirochetes per nymphal tick and a mean of 5,351 spirochetes per adult tick. No significant differences were found in the mean numbers of spirochetes counted either in nymphal ticks collected at different locations in these four states (P = 0.23 by one-way analysis of variance test) or in ticks infected with the three distinct ribosomal spacer restriction fragment length polymorphism types of B. burgdorferi (P = 0.39). A high degree of spirochete aggregation among infected ticks (variance-to-mean ratio of 24,877; moment estimate of k = 0.279) was observed. From the frequency distribution data and previously published transmission studies, we estimated that a minimum of 300 organisms may be required in a host-seeking nymphal tick to be able to transmit infection to mice while feeding on mice. These data indicate that real-time qPCR is a reliable approach for simultaneous detection and quantification of B. burgdorferi infection in field-collected ticks and can be used for ecological and epidemiological surveillance of Lyme disease spirochetes.


1997 ◽  
Vol 48 (Supplement) ◽  
pp. 43
Author(s):  
K. Miyamoto ◽  
Y. Hashimoto ◽  
M. Hirokawa
Keyword(s):  

1997 ◽  
Vol 48 (3) ◽  
pp. 261-263 ◽  
Author(s):  
Kenji MIYAMOTO ◽  
Yoshio HASHIMOTO ◽  
Masaki HIROKAWA

Sign in / Sign up

Export Citation Format

Share Document