Do-It-Yourself Tick Control: Granular Gamma-Cyhalothrin Reduces Ixodes scapularis (Acari: Ixodidae) Nymphs in Residential Backyards

Author(s):  
Gebbiena M Bron ◽  
Xia Lee ◽  
Susan M Paskewitz

Abstract Lyme disease is the most common vector-borne disease in the United States with hotspots in the Northeast and Midwest. Integrated vector control for mosquito-borne disease prevention is often organized at the community level, but tick control is primarily coordinated at the household and individual level. Management of the blacklegged tick, Ixodes scapularis (Say), the vector of the causative agent of Lyme disease in the Midwest and eastern United States in peridomestic environments may be critical as many tick encounters are reported to occur in the yard. Therefore, we assessed the effectiveness of a widely available and low-cost pesticide that targets common lawn pests and is labeled for use against ticks. In June 2019, we evaluated a granular form of gamma-cyhalothrin in a placebo-controlled residential backyard study (n = 90) in two communities in Wisconsin. The product applied by the research team reduced nymphal blacklegged ticks in plots established in the lawn part of the ecotone by 97% one week after application at both communities and by 89–97% three to four weeks postapplication. The proportion of homes with at least one nymphal tick postapplication was significantly lower at acaricide-treated homes and ranged from 4.2 to 29.2% compared with placebo homes where at least one nymphal tick was found at 50–81.5% of homes. These results support the efficacy of a low-cost do-it-yourself strategy for homeowners seeking to reduce blacklegged ticks in the yard.

Author(s):  
Jonathan M Winter ◽  
Trevor F Partridge ◽  
Dorothy Wallace ◽  
Jonathan W Chipman ◽  
Matthew P Ayres ◽  
...  

Abstract The prevalence of Lyme disease and other tick-borne diseases is dramatically increasing across the United States. While the rapid rise in Lyme disease is clear, the causes of it are not. Modeling Ixodes scapularis Say (Acari: Ixodidae), the primary Lyme disease vector in the eastern United States, presents an opportunity to disentangle the drivers of increasing Lyme disease, including climate, land cover, and host populations. We improved upon a recently developed compartment model of ordinary differential equations that simulates I. scapularis growth, abundance, and infection with Borrelia burgdorferi (Spirochaetales: Spirochaetaceae) by adding land cover effects on host populations, refining the representation of growth stages, and evaluating output against observed data. We then applied this model to analyze the sensitivity of simulated I. scapularis dynamics across temperature and land cover in the northeastern United States. Specifically, we ran an ensemble of 232 simulations with temperature from Hanover, New Hampshire and Storrs, Connecticut, and land cover from Hanover and Cardigan in New Hampshire, and Windsor and Danielson in Connecticut. Consistent with observations, simulations of I. scapularis abundance are sensitive to temperature, with the warmer Storrs climate significantly increasing the number of questing I. scapularis at all growth stages. While there is some variation in modeled populations of I. scapularis infected with B. burgdorferi among land cover distributions, our analysis of I. scapularis response to land cover is limited by a lack of observations describing host populations, the proportion of hosts competent to serve as B. burgdorferi reservoirs, and I. scapularis abundance.


2020 ◽  
Vol 20 (6) ◽  
Author(s):  
Erika T Machtinger ◽  
Scott C Williams

Abstract Arthropods pests are most frequently associated with both plants and vertebrate animals. Ticks, in particular the blacklegged ticks Ixodes scapularis Say and Ixodes pacificus Cooley & Kohls (Acari: Ixodidae), are associated with wildlife hosts and are the primary vectors of Lyme disease, the most frequently reported vector-borne disease in the United States. Immature blacklegged ticks in the eastern United States frequently use small mammals from the genus Peromyscus as hosts. These mice are competent reservoirs for Borrelia burgdorferi, the causative agent of Lyme disease, as well as other tick-borne pathogens. To conduct surveillance on immature ticks and pathogen circulation in hosts, capture and handling of these small mammals is required. While protocols for rearing and pest surveillance on plants are common, there are very few protocols aimed at entomologists to conduct research on vertebrate–arthropod relationships. The goal of this manuscript is to provide a practical template for trapping Peromyscus spp. for vector and vector-borne pathogen surveillance and ecology for professionals that may not have a background in wildlife research. Important considerations are highlighted when targeting P. leucopus Rafinesque and P. maniculatus Wagner. Specifically, for tick and tick-borne disease-related projects, materials that may be required are suggested and references and other resources for researchers beginning a trapping study are provided.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Kristen L. Knapp ◽  
Nancy A. Rice

Borrelia burgdorferi, the causative agent of Lyme disease, andBabesia microti, a causative agent of babesiosis, are increasingly implicated in the growing tick-borne disease burden in the northeastern United States. These pathogens are transmitted via the bite of an infected tick vector,Ixodes scapularis, which is capable of harboring and inoculating a host with multiple pathogens simultaneously. Clinical presentation of the diseases is heterogeneous and ranges from mild flu-like symptoms to near-fatal cardiac arrhythmias. While the reason for the variability is not known, the possibility exists that concomitant infection with bothB. burgdorferiandB. microtimay synergistically increase disease severity. In an effort to clarify the current state of understanding regarding coinfection withB. burgdorferiandB. microti, in this review, we discuss the geographical distribution and pathogenesis of Lyme disease and babesiosis in the United States, the immunological response of humans toB. burgdorferiorB. microtiinfection, the existing knowledge regarding coinfection disease pathology, and critical factors that have led to ambiguity in the literature regarding coinfection, in order to eliminate confusion in future experimental design and investigation.


2019 ◽  
Vol 57 (1) ◽  
pp. 304-307 ◽  
Author(s):  
Ryan T Larson ◽  
Xia Lee ◽  
Tela Zembsch ◽  
Gebbiena M Bron ◽  
Susan M Paskewitz

Abstract The blacklegged tick, Ixodes scapularis Say, is the primary Lyme disease vector in the eastern United States. Both immature stages of I. scapularis take blood meals from mice belonging to the genus Peromyscus. Mice are active during the night and spend the majority of diel periods in nests. Thus, immature I. scapularis have a greater opportunity to drop from Peromyscus hosts while in nests compared with the forest floor. Here, we collected 11 Peromyscus nests during a 3-mo period during which the immature I. scapularis are known to be active. We then examined nesting materials for the presence of I. scapularis. Immature I. scapularis were detected in 64% of Peromyscus nests examined. Additionally, 55% of the nests contained at least one Dermacentor variabilis Say larva. Eighty-seven percent of all larval ticks found within nests were blood-fed. Because Peromyscus spp. are highly competent reservoirs of numerous tick-borne pathogens, the ticks that detach in their nests may be important for the maintenance of tick-borne diseases. However, further studies are needed to determine the fate of the I. scapularis that detach in Peromyscus nests.


Author(s):  
Gebbiena M Bron ◽  
Hannah Fenelon ◽  
Susan M Paskewitz

Abstract Lyme disease (LD) is the most common vector-borne disease in the United States. To assess whether a tick bite puts someone at risk for LD, adequate tick identification skills are needed. We surveyed residents of a high LD-incidence state, Wisconsin, on their ability to distinguish ticks from insects and to identify the specimens that could transmit the LD causative agent. Surveys were conducted using resin blocks with four insects and four tick specimens embedded. About half of the participants (64 of 130) recognized all of the ticks, and 60% of those individuals chose only ticks and no insects. Younger participants (18- to 44-yr old) were more likely to identify ticks correctly compared with those 45 yr and older. Participants who agreed strongly with the statement ‘I know a lot about ticks` were also likelier to correctly identify ticks. When asked to identify which specimens could transmit LD, less than 25% of participants chose both the Ixodes scapularis Say adult female and nymph and about half of those (15% of participants) picked only those two and no other specimens. Although the relatively small convenience sample was biased toward younger participants who consider themselves ‘outdoorsy’, results showed that further assessments of tick recognition skills are needed to understand what determines whether people can recognize medically important ticks and to evaluate the potential benefits of enhanced education. In addition to the value of the resin blocks as research tools, the blocks may be useful as training tools to improve tick check efficacy.


2009 ◽  
Vol 78 (1) ◽  
pp. 138-144 ◽  
Author(s):  
Sarojini Adusumilli ◽  
Carmen J. Booth ◽  
Juan Anguita ◽  
Erol Fikrig

ABSTRACT Lyme disease is the most common tick-borne illness in the United States. In this paper we explore the contribution of Ixodes scapularis ticks to the pathogenicity of Borrelia burgdorferi in mice. Previously we demonstrated that an isolate of B. burgdorferi sensu stricto (designated N40), passaged 75 times in vitro (N40-75), was infectious but was no longer able to cause arthritis and carditis in C3H mice. We now show that N40-75 spirochetes can readily colonize I. scapularis and multiply during tick engorgement. Remarkably, tick-transmitted N40-75 spirochetes cause disease in mice. N40-75 spirochetes isolated from these animals also retained their pathogenicity when subsequently administered to mice via syringe inoculation. Array analysis revealed that several genes associated with virulence, including bba25, bba65, bba66, bbj09, and bbk32, had higher expression levels in the tick-passaged N40-75 spirochete. These data suggest that transmission of a high-passage attenuated isolate of B. burgdorferi by the arthropod vector results in the generation of spirochetes that have enhanced pathogenesis in mice.


2018 ◽  
Vol 55 (6) ◽  
pp. 1386-1401 ◽  
Author(s):  
Nicholas H Ogden ◽  
Genevieve Pang ◽  
Howard S Ginsberg ◽  
Graham J Hickling ◽  
Russell L Burke ◽  
...  

Genetics ◽  
2002 ◽  
Vol 160 (3) ◽  
pp. 833-849
Author(s):  
Wei-Gang Qiu ◽  
Daniel E Dykhuizen ◽  
Michael S Acosta ◽  
Benjamin J Luft

Abstract Over 80% of reported cases of Lyme disease in the United States occur in coastal regions of northeastern and mid-Atlantic states. The genetic structure of the Lyme disease spirochete (Borrelia burgdorferi) and its main tick vector (Ixodes scapularis) was studied concurrently and comparatively by sampling natural populations of I. scapularis ticks along the East Coast from 1996 to 1998. Borrelia is genetically highly diverse at the outer surface protein ospC. Since Borrelia is highly clonal, the ospC alleles can be used to define clones. A newly designed reverse line blotting (RLB) assay shows that up to 10 Borrelia clones can infect a single tick. The clone frequencies in Borrelia populations are the same across the Northeast. On the other hand, I. scapularis populations show strong regional divergence (among northeastern, mid-Atlantic, and southern states) as well as local differentiation. The high genetic diversity within Borrelia populations and the disparity in the genetic structure between Borrelia and its tick vector are likely consequences of strong balancing selection on local Borrelia clones. Demographically, both Borrelia and I. scapularis populations in the Northeast show the characteristics of a species that has recently expanded from a population bottleneck. Major geological and ecological events, such as the last glacial maximum (18,000 years ago) and the modern-day expansion of tick habitats, are likely causes of the observed “founder effects” for the two organisms in the Northeast. We therefore conclude that the genetic structure of B. burgdorferi has been intimately shaped by the natural history of its main vector, the northern lineage of I. scapularis ticks.


Sign in / Sign up

Export Citation Format

Share Document