covariance matrix reconstruction
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 53)

H-INDEX

13
(FIVE YEARS 3)

2021 ◽  
Vol 13 (12) ◽  
pp. 2346
Author(s):  
Zhuang Xie ◽  
Jiahua Zhu ◽  
Chongyi Fan ◽  
Xiaotao Huang ◽  
Jian Wang

When the deceptive targets are in the ambiguious range bin but are received at the same range gate with the desired target by the array, the traditional multiple-input multiple-output (MIMO) radar is not able to discriminate between them. Based on the unique range-dependent beampattern of the frequency diverse array (FDA)-MIMO radar, we propose a novel robust mainlobe deceptive target suppression method based on covariance matrix reconstruction to form nulls at the frequency points of the transmit–receive domain where deceptive targets are located. First, the proposed method collects the deceptive targets and noise information in the transmit–receive frequency domain to reconstruct the jammer-noise covariance matrix (JNCM). Then, the covariance matrix of the desired target is constructed in the desired target region, which is assumed to already be known. The transmit–receive steering vector (SV) of the desired target is estimated to be the dominant eigenvector of the desired target covariance matrix. Finally, the weighting vector of the receive beamformer is calculated by combining the reconstructed JNCM and the estimated desired target SV. By implementing the weighting vector at the receiving end, the deceptive targets can be effectively suppressed. The simulation results demonstrate that the proposed method is robust to SV mismatches and provides a signal-to-jamming-plus-noise ratio (SJNR) output that is close to the optimal.


Sign in / Sign up

Export Citation Format

Share Document