scholarly journals Hybrid Synchronization of Uncertain Generalized Lorenz System by Adaptive Control

2018 ◽  
Vol 2018 ◽  
pp. 1-5 ◽  
Author(s):  
Xinlian Zhou ◽  
Yuhua Xu

This paper investigates hybrid synchronization of the uncertain generalized Lorenz system. Several useful criteria are given for synchronization of two generalized Lorenz systems, and the adaptive control law and the parameter update law are used. In comparison with those of existing synchronization methods, hybrid synchronization includes full-order synchronization, reduced-order synchronization, and modified projective synchronization. What is more, control of the stability point, complete synchronization, and antisynchronization can coexist in the same system. Numerical simulations show the effectiveness of this method in a class of chaotic systems.

Entropy ◽  
2019 ◽  
Vol 21 (5) ◽  
pp. 481 ◽  
Author(s):  
Zhonghui Li ◽  
Tongshui Xia ◽  
Cuimei Jiang

By designing a state observer, a new type of synchronization named complex modified projective synchronization is investigated in a class of nonlinear fractional-order complex chaotic systems. Combining stability results of the fractional-order systems and the pole placement method, this paper proves the stability of fractional-order error systems and realizes complex modified projective synchronization. This method is so effective that it can be applied in engineering. Additionally, the proposed synchronization strategy is suitable for all fractional-order chaotic systems, including fractional-order hyper-chaotic systems. Finally, two numerical examples are studied to show the correctness of this new synchronization strategy.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Yi Chai ◽  
Liping Chen ◽  
Ranchao Wu

This paper mainly investigates a novel inverse projective synchronization between two different fractional-order hyperchaotic systems, that is, the fractional-order hyperchaotic Lorenz system and the fractional-order hyperchaotic Chen system. By using the stability theory of fractional-order differential equations and Lyapunov equations for fractional-order systems, two kinds of suitable controllers for achieving inverse projective synchronization are designed, in which the generalized synchronization, antisynchronization, and projective synchronization of fractional-order hyperchaotic Lorenz system and fractional-order hyperchaotic Chen system are also successfully achieved, respectively. Finally, simulations are presented to demonstrate the validity and feasibility of the proposed method.


2015 ◽  
Vol 26 (10) ◽  
pp. 1550110 ◽  
Author(s):  
Shahed Vahedi ◽  
Mohd Salmi Md Noorani

Cluster modified projective synchronization of two community networks with nonidentical nodes is studied in this paper. Each network has a unique dynamics and its clusters have different parameter sets which could make their dynamics chaotic or periodic for instance. Therefore, we are dealing with varieties of dynamics in these clusters. By introducing an adaptive control gain in our controller design and using Lyapunov stability theory, we show that two community networks can reach to the synchronized state having arbitrary matrix scaling factor between corresponding nodes of the networks. Moreover, using this matrix we can observe different synchronization regimes simultaneously in each pair of corresponding nodes.


2012 ◽  
Vol 26 (16) ◽  
pp. 1250121
Author(s):  
XINGYUAN WANG ◽  
LULU WANG ◽  
DA LIN

In this paper, a generalized (lag, anticipated and complete) projective synchronization for a general class of chaotic systems is defined. A systematic, powerful and concrete scheme is developed to investigate the generalized (lag, anticipated and complete) projective synchronization between the drive system and response system based on the adaptive control method and feedback control approach. The hyperchaotic Chen system and hyperchaotic Lorenz system are chosen to illustrate the proposed scheme. Numerical simulations are provided to show the effectiveness of the proposed schemes. In addition, the scheme can also be extended to research generalized (lag, anticipated and complete) projective synchronization between nonidentical discrete-time chaotic systems.


Open Physics ◽  
2013 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhenwu Sun

AbstractFunction projective synchronization (FPS) of two novel hyperchaotic systems with four-scroll attractors which have been found up to the present is investigated. Adaptive control is employed in the situation that system parameters are unknown. Based on Lyapunov stability theory, an adaptive controller and a parameter update law are designed so that the two systems can be synchronized asymptotically by FPS. Numerical simulation is provided to show the effectiveness of the proposed adaptive controller and the parameter update law.


2016 ◽  
Vol 27 (08) ◽  
pp. 1650087 ◽  
Author(s):  
Shahed Vahedi ◽  
Mohd Salmi Md Noorani

Cluster modified projective synchronization (CMPS) between two topologically distinct community networks is studied in this paper. Each cluster here has a unique dynamics at least with respect to the parameter sets. Using an adaptive feedback control gain and a matrix scaling factor, we show that CMPS between two community networks can be realized with considering minimum assumptions and imposing just few restrictions on the configuration set. We use Lyapunov stability theory for the proof and employ computer simulation to confirm our result on randomly generated community networks. Simulations also show the possibility of having hybrid synchronization between the two networks.


Sign in / Sign up

Export Citation Format

Share Document