legendre pseudospectral method
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 6)

H-INDEX

10
(FIVE YEARS 2)

2022 ◽  
Vol 27 (1) ◽  
pp. 38-53
Author(s):  
Abdeldjalil Chattouh ◽  
Khaled Saoudi ◽  
Maroua Nouar

A semilinear pseudoparabolic equation with nonlocal integral boundary conditions is studied in the present paper. Using Rothe method, which is based on backward Euler finitedifference schema, we designed a suitable semidiscretization in time to approximate the original problem by a sequence of standard elliptic problems. The questions of convergence of the approximation scheme as well as the existence and uniqueness of the solution are investigated. Moreover, the Legendre pseudospectral method is employed to discretize the time-discrete approximation scheme in the space direction. The main advantage of the proposed approach lies in the fact that the full-discretization schema leads to a symmetric linear algebraic system, which may be useful for theoretical and practical reasons. Finally, numerical experiments are included to illustrate the effectiveness and robustness of the presented algorithm.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
H. Jafari ◽  
M. Mahmoudi ◽  
M. H. Noori Skandari

AbstractThe main aim presented in this article is to provide an efficient transferred Legendre pseudospectral method for solving pantograph delay differential equations. At the first step, we transform the problem into a continuous-time optimization problem and then utilize a transferred Legendre pseudospectral method to discretize the problem. By solving this discrete problem, we can attain the pointwise and continuous estimated solutions for the major pantograph delay differential equation. The convergence of method has been considered. Also, numerical experiments are described to show the performance and precision of the presented technique. Moreover, the obtained results are compared with those from other techniques.


2020 ◽  
Vol 42 (13) ◽  
pp. 2361-2371 ◽  
Author(s):  
Arunava Banerjee ◽  
Mashuq Nabi ◽  
T. Raghunathan

This paper proposes the use of Legendre pseudospectral method (PSM) to obtain the optimal guidance strategy for a two-dimensional interceptor problem. An optimal control problem is formulated that addresses the conflicting objective of minimizing the energy usage, along with minimizing the time taken by missile to capture the target. The PSM-based guidance strategy is compared with other conventional guidance laws such as pure proportional navigation (PPN) guidance law and also evolutionary algorithm inspired differential evolution tuned proportional navigation (DEPN) guidance law. A scheme by which the PSM guidance strategy can be applied online is also included in this paper. The cost function value and the interception time indicates the superiority of the PSM-based guidance strategy.


2020 ◽  
Vol 145 ◽  
pp. 103682
Author(s):  
Yanwei Liu ◽  
Ziyue Lin ◽  
Kegang Zhao ◽  
Jie Ye ◽  
Xiangdong Huang

Sign in / Sign up

Export Citation Format

Share Document