mold oscillation
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 4)

H-INDEX

7
(FIVE YEARS 1)

Metals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1389
Author(s):  
Hyunjin Yang

A 1D analytical model for slag infiltration during continuous casting of steel is developed to investigate the slag behavior in the mold–strand gap. The superposition principle and Fourier expansion are applied to obtain the analytical solution for transient slag flow under arbitrary mold oscillation including non-sinusoidal oscillation mode. The validated model using literature data partially explains several controversies such as slope of slag film channel, mechanism of non-sinusoidal mold oscillation, and timing of slag infiltration. The model shows that a converging slag film into the casting direction is required to open the mold–strand gap if compression is applied in between. Also, model calculations imply that higher slag consumption is achievable from non-sinusoidal mold oscillation by means of the increase of film thickness through longer positive pressure with higher peak pressure. The model demonstrates a time difference between slag flow and pressure near the meniscus and the discrepancy in timing of infiltration between previous works is attributed to the mismatch. The model provides a concise but reliable tool to understand slag infiltration behavior and design mold oscillation settings.


Metals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 418 ◽  
Author(s):  
Xiaobo Yan ◽  
Boran Jia ◽  
Qiangqiang Wang ◽  
Shengping He ◽  
Qian Wang

The effect of nonsinusoidal oscillation at different modification ratios (α) on slag lubrication was investigated during mold oscillation. A validated and reliable multiphase model was employed, which involved flow and solidification of the molten steel and mold slag. The main results revealed that a large amount of liquid slag at the entrance of the mold–strand channel reflowed into the slag pool at the middle of the negative strip period. The phenomenon was more distinct, with an increase in the modification ratio. The modification ratio had no obvious effect on the average thickness of the liquid film at different depths below the meniscus. A modification ratio of 0.5 caused less fluctuation of the transient liquid film. Quantitative prediction of slag consumption indicated that as the modification ratio increased from 0.2 to 0.5 to 0.8, the average values were 0.278, 0.286, and 0.279 kg/m2, respectively. Shell solidification and growth near the meniscus mainly occurred when the mold was descending, which not only depended on the heat flux, but also on the liquid slag flow, the pressure driven by slag rim, and the mold oscillation. Optimization of the modification ratio of nonsinusoidal oscillation could be an alternative to delay growth of the initial shell towards the molten steel. A modification ratio of 0.5 had the least robust shell tip at the meniscus, thereby reducing entrapment of inclusions and bubbles by the shell tip.


JOM ◽  
2018 ◽  
Vol 70 (12) ◽  
pp. 2909-2916 ◽  
Author(s):  
Yongkang Deng ◽  
Yabing Zhang ◽  
Qiangqiang Wang ◽  
Qian Wang

Sign in / Sign up

Export Citation Format

Share Document